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Section 1

Elliptic Curves: Theory



Elliptic-curve cryptography

• Revolutionary introduction (1985): Elliptic Curve Cryptography (ECC)
transformed public-key cryptography.

• Superior efficiency: More powerful than RSA and classical Diffie-Hellman.
• ECC with 256-bit key ≈ RSA with 4,096-bit key (security).
• Significantly smaller key sizes for equivalent security.

• Mathematical foundation: Operations on points of elliptic curves.
• Many curve types: simple/sophisticated, efficient/inefficient, secure/insecure.

• Adoption timeline:
• Early 2000s: Standardization bodies.
• 2005: OpenSSL support.
• 2011: OpenSSH support.

• Current applications: HTTPS, mobile phones, blockchain (Bitcoin, Ethereum).
• Based on ECDLP: Elliptic Curve Discrete Logarithm Problem.
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Why elliptic curve cryptographymatters

• Key size efficiency: ECC provides equivalent security with much smaller keys.
• 256-bit ECC key ≃ 4,096-bit RSA key ≃ 15,360-bit finite field DH.
• Exponential security advantage as key sizes increase.

• Performance benefits:
• Faster key generation, signing, and verification.
• Lower computational overhead.
• Reduced memory usage.

• Bandwidth efficiency: Smaller certificates, signatures, and key exchanges.
• Mobile and IoT devices: Critical for resource-constrained environments.

• Limited battery life.
• Constrained processing power.
• Minimal storage capacity.
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ECDH vs. finite field Diffie-Hellman

Traditional Finite Field DH:
• Works in multiplicative group ℤ∗𝑝
• Security based on discrete log in ℤ∗𝑝
• Requires large primes (2048+ bits)
• Key exchange: 𝑔𝑎𝑏 mod 𝑝

Elliptic Curve DH (ECDH):
• Works on elliptic curve group
• Security based on ECDLPa

• Requires smaller keys (256 bits)
• Key exchange: 𝑎 ⋅ (𝑏 ⋅ 𝐺)

aElliptic-curve discrete logarithm problem

ECDH advantages:
• Efficiency: 10-40x faster than finite field DH for equivalent security.
• Scalability: Performance gap widens with higher security levels.
• Standards compliance: Widely adopted (TLS 1.3, Signal Protocol, etc.)
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Why finite field DH attacks don’t work on ECDH

• Differentmathematical structures:
• Finite field DH: multiplicative group ℤ∗𝑝 with multiplication.
• ECDH: elliptic curve group with point addition (geometrically defined).

• Index calculus attack limitation:
• Works on finite fields: factorize 𝑔𝑥 using small primes.
• Fails on elliptic curves: no equivalent of “small primes” for points.
• Elliptic curve points cannot be “factorized” in the same way.

• Subexponential vs. exponential algorithms:
• Finite field DL: subexponential algorithms exist (index calculus variants).
• ECDLP: only exponential algorithms known (Pollard’s rho, brute force).

• Algebraic structure protection:
• Elliptic curve addition is more “rigid” than modular multiplication.
• Geometric constraints prevent many algebraic manipulation attacks.

• Result: ECDH requires exponentially more work to break→ smaller key sizes.
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Very intuitively

Finite-field Diffie-Hellman’s structure allows for
certain mathematically efficient attacks.

Let’s make that structure “weirder” using elliptic
curves and avoid these attacks.
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What is an elliptic curve?

• Definition: An elliptic curve is a curve on a
plane—a set of points with 𝑥- and
𝑦-coordinates.

• Curve equations: A curve’s equation defines
all the points that belong to that curve.

• Examples of curves:
• 𝑦 = 3: horizontal line with vertical coordinate
3

• 𝑦 = 𝑎𝑥 + 𝑏: straight lines (with fixed 𝑎, 𝑏)
• 𝑥2 + 𝑦2 = 1: circle of radius 1 centered on
origin

• Key concept: Points on a curve are (𝑥, 𝑦) pairs
that satisfy the curve’s equation.

An elliptic curve with the equation
𝑦2 = 𝑥3 − 4𝑥.

Source: Serious Cryptography
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What is an elliptic curve?

• Weierstrass form: In cryptography, elliptic
curves typically have equation:

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• Shape parameters: Constants 𝑎 and 𝑏 define
the shape of the curve.

• Example: The elliptic curve 𝑦2 = 𝑥3 − 4𝑥
• Here: 𝑎 = 0 and 𝑏 = −4
• Creates a characteristic symmetric curve

• Geometric properties: Elliptic curves have
special addition properties that make them
useful for cryptography.

An elliptic curve with the equation
𝑦2 = 𝑥3 − 4𝑥.

Source: Serious Cryptography

Applied Cryptography - American University of Beirut 9/57



Elliptic curves over real numbers vs. integers

Elliptic curve over the real numbers (includes negative
numbers, decimals)...

Same elliptic curve over the integers (only whole
positive numbers)
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Adding two points on an elliptic curve

• Point addition follows a simple
geometric process:
• Draw the line that connects points
𝑃 and 𝑄.

• Find the other point where this line
intersects the curve.

• 𝑅 is the reflection of this
intersection point with respect to
the 𝑥-axis.

• Result: Point 𝑃 + 𝑄 has the same
𝑥-coordinate as the intersection but
the inverse 𝑦-coordinate. Adding two points on an elliptic curve.

Source: Serious Cryptography
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Doubling a point on an elliptic curve

• Point doubling: When 𝑃 = 𝑄, adding
𝑃 and 𝑄 is equivalent to computing
𝑃 + 𝑃 = 2𝑃.

• Geometric process:
• Can’t draw a line between 𝑃 and
itself.

• Instead, draw the line tangent to
the curve at point 𝑃.

• Find where this tangent line
intersects the curve.

• 2𝑃 is the reflection of this
intersection point with respect to
the 𝑥-axis.

Doubling a point on an elliptic curve.
Source: Serious Cryptography

Applied Cryptography - American University of Beirut 12/57



Remember this?
We need an equivalent for elliptic curves

• The discrete logarithm problem:
• Given a finite cyclic group 𝐺, a generator 𝑔 ∈ 𝐺, and an element ℎ ∈ 𝐺, find the
integer 𝑥 such that 𝑔𝑥 = ℎ

• In more concrete terms:
• Let 𝑝 be a large prime and let 𝑔 be a generator of the multiplicative group ℤ∗𝑝 (all
nonzero integers modulo 𝑝).

• Given:
• 𝑔 ∈ ℤ∗

𝑝, ℎ ∈ ℤ∗
𝑝

• Find 𝑥 ∈ {0, 1,… ,𝑝 − 2} such that 𝑔𝑥 ≡ ℎ (mod 𝑝)
• This problem is believed to be computationally hard when 𝑝 is large and 𝑔 is a
primitive root modulo 𝑝.

• “Believed to be” = we don’t know of any way to do it that doesn’t take forever, unless
we have a strong, stable quantum computer (Shor’s algorithm)
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Group structure of elliptic curves

We need to define all these operations so that our elliptic curve have a group
structure, allowing us to then use them as a new basis for Diffie-Hellman, and then
do DH using point addition instead of modular multiplication.
• Closure property: If points 𝑃 and 𝑄 belong to a curve, then 𝑃 + 𝑄 also belongs to
the curve.

• Associativity: (𝑃 + 𝑄) + 𝑅 = 𝑃 + (𝑄 + 𝑅) for any points 𝑃, 𝑄, and 𝑅.
• Identity element: The point at infinity𝒪 such that 𝑃 + 𝒪 = 𝑃 for any 𝑃.
• Inverse elements: Every point 𝑃 = (𝑥𝑃, 𝑦𝑃) has an inverse −𝑃 = (𝑥𝑃, −𝑦𝑃) such
that 𝑃 + (−𝑃) = 𝒪.

• Great! We have a group structure!
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Elliptic curves over finite fields

• Practical implementation: Most elliptic curve cryptosystems work with
coordinates modulo a prime 𝑝.
• Coordinates are numbers in the finite field ℤ𝑝.
• Same geometric operations, but computed modulo 𝑝.

• Security foundation: Security depends on the cardinality (number of points) on
the curve.
• Analogous to how RSA security depends on the size of numbers used.
• More points→ harder discrete logarithm problem.

• Curve cardinality: The number of points depends on:
• The specific curve equation (parameters 𝑎 and 𝑏).
• The prime modulus 𝑝.
• Can be computed using specialized algorithms.

• Why finite fields? Infinite precision real numbers are impractical for computers.
• Finite field arithmetic is exact and efficient.
• Discrete structure enables cryptographic security.
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The elliptic curve discrete logarithm problem (ECDLP)

• Remember the original DLP: Given 𝑔, ℎ, and prime 𝑝, find 𝑥 such that 𝑔𝑥 ≡ ℎ
(mod 𝑝).

• ECDLP is the elliptic curve version:
• Given an elliptic curve and a base point 𝐺 on that curve,
• Given another point𝐻 on the same curve,
• Find the integer 𝑘 such that 𝑘 ⋅ 𝐺 = 𝐻.

• Why is this hard?
• Easy direction: Given 𝑘 and 𝐺, computing 𝑘 ⋅ 𝐺 is efficient.
• Hard direction: Given 𝐺 and𝐻 = 𝑘 ⋅ 𝐺, finding 𝑘 is very difficult.
• No known efficient algorithms (except with quantum computers).
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Diffie-Hellman key agreement over elliptic curves

• Classical Diffie-Hellman recap:
• Alice picks secret 𝑎, computes 𝐴 = 𝑔𝑎, sends 𝐴 to Bob
• Bob picks secret 𝑏, computes 𝐵 = 𝑔𝑏, sends 𝐵 to Alice
• Both compute shared secret: 𝐴𝑏 = 𝐵𝑎 = 𝑔𝑎𝑏

• Elliptic Curve Diffie-Hellman (ECDH):
• Alice picks secret 𝑎, computes 𝐴 = 𝑎 ⋅ 𝐺, sends 𝐴 to Bob
• Bob picks secret 𝑏, computes 𝐵 = 𝑏 ⋅ 𝐺, sends 𝐵 to Alice
• Both compute shared secret: 𝑎 ⋅ 𝐵 = 𝑏 ⋅ 𝐴 = 𝑎𝑏 ⋅ 𝐺

• Key differences:
• Exponentiation 𝑔𝑥 → Scalar multiplication 𝑥 ⋅ 𝐺
• Modular arithmetic→ Elliptic curve point operations
• Generator 𝑔→ Base point 𝐺
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Section 2

Digital Signatures



Digital signatures with elliptic curves

• Why elliptic curve signatures? Same advantages as ECDH:
• Smaller signatures for equivalent security.
• Faster generation and verification.
• Better performance on mobile/IoT devices.

• Twomain approaches:
• ECDSA: Elliptic Curve Digital Signature Algorithm (1990s).
• EdDSA: Edwards-curve Digital Signature Algorithm (2011).

• Real-world adoption:
• ECDSA: Bitcoin, Ethereum, TLS, SSH.
• Ed25519: OpenSSH, Signal Protocol, many modern systems.

• Key insight: Replace RSA’s modular exponentiation with elliptic curve point
multiplication.
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ECDSA: The established standard

• Elliptic Curve Digital Signature Algorithm (ECDSA):
• NIST standardized in the early 1990s.
• Elliptic curve version of the Digital Signature Algorithm (DSA).
• Widely adopted in blockchain and web security.

• Key components:
• Private key: secret number 𝑑
• Public key: elliptic curve point 𝑃 = 𝑑 ⋅ 𝐺
• Base point 𝐺 on agreed elliptic curve

• Security foundation: Based on ECDLP hardness.
• Signature format: Two numbers (𝑟, 𝑠)

• For 256-bit curves: 512-bit total signature size.
• Much smaller than equivalent RSA signatures.
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ECDSA signature generation

Input: Message𝑀, private key 𝑑
1. Hash themessage: ℎ = Hash(𝑀)

• Use SHA-256, SHA-3, or similar
• Interpret hash as number ℎ ∈ [0, 𝑛 − 1]

2. Generate random nonce: Pick random
𝑘 ∈ [1, 𝑛 − 1]

3. Compute signature point: 𝑘 ⋅ 𝐺 = (𝑥, 𝑦)
4. Calculate 𝑟: 𝑟 = 𝑥 mod 𝑛
5. Calculate 𝑠: 𝑠 = ℎ+𝑟𝑑

𝑘
mod 𝑛

6. Output signature: (𝑟, 𝑠)

Critical requirement:
• Random 𝑘must be:

• Cryptographically random
• Different for every
signature

• Never reused

• Reusing 𝑘 = private key
exposure!
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ECDSA signature verification

Input: Message𝑀, signature (𝑟, 𝑠), public key 𝑃
1. Hash themessage: ℎ = Hash(𝑀)
2. Computemodular inverse: 𝑤 = 1

𝑠
mod 𝑛

3. Calculate verification values:
• 𝑢 = ℎ ⋅ 𝑤 mod 𝑛
• 𝑣 = 𝑟 ⋅ 𝑤 mod 𝑛

4. Compute verification point: 𝑄 = 𝑢 ⋅ 𝐺 + 𝑣 ⋅ 𝑃
5. Check signature: Accept if 𝑄𝑥 = 𝑟

Why this works:
• Mathematical relationship:

𝑄 = 𝑢 ⋅ 𝐺 + 𝑣 ⋅ 𝑃
= 𝑢 ⋅ 𝐺 + 𝑣 ⋅ 𝑑 ⋅ 𝐺
= (𝑢 + 𝑣𝑑) ⋅ 𝐺

• When signature is valid:

𝑢 + 𝑣𝑑 = 𝑘 mod 𝑛

• So 𝑄 = 𝑘 ⋅ 𝐺, giving 𝑄𝑥 = 𝑟
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EdDSA: Themodern alternative

• Background: Built on Schnorr signatures (1989).
• Schnorr’s patent prevented adoption until 2008.
• Edwards-curve DSA developed by Bernstein et al. (2011).

• Key advantages over ECDSA:
• Deterministic: No random number generation during signing.
• Faster: Both signing and verification.
• Simpler: Cleaner mathematical structure.
• Safer: Eliminates randomness-related vulnerabilities.

• Design philosophy: Avoid the pitfalls that plague ECDSA.
• Most popular instance: Ed25519 (based on Curve25519).
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EdDSA signature generation

Key insight: Derive everything deterministically from private key and message.
Input: Message𝑀, private key 𝑘 (byte string)
1. Expand private key: 𝑎 ∥ ℎ = Hash(𝑘)

• 𝑎: actual signing scalar (first 256 bits)
• ℎ: randomness source (last 256 bits)

2. Compute public key: 𝐴 = 𝑎 ⋅ 𝐵 (precomputed)

3. Generate nonce deterministically: 𝑟 = Hash(ℎ ∥ 𝑀)
4. Compute signature point: 𝑅 = 𝑟 ⋅ 𝐵
5. Compute signature scalar: 𝑆 = 𝑟 + Hash(𝑅, 𝐴,𝑀) × 𝑎
6. Output signature: (𝑅, 𝑆)

Benefits:
• No randomness
needed

• Samemessage =
same signature

• Immune to bad RNG
• Faster (no modular
inverse)
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EdDSA signature verification

Input: Message𝑀, signature (𝑅, 𝑆), public key 𝐴
1. Verify equation: Check if:

𝑆 ⋅ 𝐵 = 𝑅 + hash(𝑅, 𝐴,𝑀) ⋅ 𝐴

2. Accept signature if equation holds

Why this works:
• From signing: 𝑆 = 𝑟 + hash(𝑅, 𝐴,𝑀) × 𝑎
• So: 𝑆 ⋅ 𝐵 = (𝑟 + hash(𝑅, 𝐴,𝑀) × 𝑎) ⋅ 𝐵
• = 𝑟 ⋅ 𝐵 + hash(𝑅, 𝐴,𝑀) × 𝑎 ⋅ 𝐵
• = 𝑅 + hash(𝑅, 𝐴,𝑀) × 𝐴

Performance benefits:
• Nomodular inverse
computation

• Two scalar multiplications
(like ECDSA)

• Simpler arithmetic
• Better constant-time
implementation
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Ed25519: The practical implementation

• Ed25519 = EdDSA + specific parameters:
• Twisted Edwards curve based on Curve25519
• SHA-512 as hash function
• Optimized base point for efficiency

• Performance characteristics:
• Signing: 40-90 microseconds (modern CPUs)
• Verification: 100-200microseconds
• 64-byte signatures (512 bits)

• Security level: 128 bits (equivalent to 3072-bit RSA)
• Adoptionmilestones:

• 2011: Initial specification
• 2017: RFC 8032 standardization
• 2023: Added to NIST FIPS 186-5
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ECDSA vs. Ed25519: The comparison

ECDSA:
• Pros:

• Established standard (1990s)
• Wide library support
• Blockchain industry standard

• Cons:
• Requires secure randomness
• Slower verification
• Complex implementation
• Vulnerable to bad RNG

Ed25519:
• Pros:

• Deterministic signing
• Faster performance
• Simpler implementation
• Better security properties

• Cons:
• Newer standard
• Some validation inconsistencies
• Less blockchain adoption

Recommendation: Use Ed25519 for new projects unless ECDSA is specifically
required.
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Section 3

Elliptic Curves: Practice



Choosing the right elliptic curve

• Not all elliptic curves are created
equal: The mathematical structure of
the curve directly impacts
cryptographic security.

• Security implications: Poor curve
choice can make ECDLP much easier
to solve.

• In practice: You’ll use established
curves, but understanding what
makes a curve safe helps you:
• Choose among available options.
• Better understand associated risks.
• Evaluate new curve proposals.

Elliptic curves have many distinct and complex
security criteria.

Source: https://safecurves.cr.yp.to
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Criteria for safe elliptic curves

• Group order security: The number of points on the curve shouldn’t factor into
small numbers.
• If the order has small factors, ECDLP becomes much easier.
• Attackers can use algorithms like Pohlig-Hellman to exploit small factors.

• Addition formula consistency: Unified addition laws are preferred.
• Some curves require different formulas for 𝑃 + 𝑄 vs. 𝑃 + 𝑃 (doubling).
• Timing differences between these operations can leak information.
• Secure curves use the same formula for all additions.

• Parameter transparency: The origin of curve parameters should be clearly
explained.
• Unknown parameter origins raise suspicion of backdoors.
• “Nothing up my sleeve” numbers increase trust.
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NIST curves: The establishment standard

• Official standardization: NIST standardized several curves in FIPS 186 (2000).
• “Recommended Elliptic Curves for Federal Government Use”
• Five prime curves working modulo prime numbers.
• Ten binary polynomial curves (rarely used today).

• Most popular: P-256
• Works modulo 𝑝 = 2256 − 2224 + 2192 + 296 − 1
• Equation: 𝑦2 = 𝑥3 − 3𝑥 + 𝑏 (256-bit 𝑏 parameter)
• Other sizes: P-192, P-224, P-384, P-521 (yes, 521 not 512!)

• Wide adoption: Used in TLS, government systems, many commercial
applications.
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The NIST controversy: Suspicious constants

• The problem: Only the NSA knows the true origin of the 𝑏 coefficient in NIST
curves.

• NSA’s explanation: 𝑏 results from hashing a “random-looking” constant with
SHA-1.
• P-256’s 𝑏 comes from: c49d3608 86e70493 6a6678e1 139d26b7 819f7e90
• But why this particular constant? Nobody knows.

• Community response:
• Most experts don’t believe the curves hide backdoors.
• But the lack of transparency creates suspicion.
• Led to development of alternative curves with transparent parameters.

• Post-Snowden era: Increased scrutiny of NSA-designed cryptographic
standards.
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Curve25519: The performance revolution

• Created by Daniel J. Bernstein (2006): Motivated by performance and security
concerns.

• Performance advantages:
• Faster than NIST curves.
• Shorter keys for equivalent security.
• Optimized for software implementation.

• Security improvements:
• No suspicious constants—all parameters have clear origins.
• Unified addition formula (same for 𝑃 + 𝑄 and 𝑃 + 𝑃).
• Resistant to timing attacks.

• Mathematical form: 𝑦2 = 𝑥3 + 486662𝑥2 + 𝑥
• Works modulo 2255 − 19 (closest prime to 2255).
• Coefficient 486662 is the smallest integer satisfying security criteria.
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Curve25519: From rebel to standard

• Widespread adoption:
• WhatsApp end-to-end encryption
• TLS 1.3 key exchange
• OpenSSH connections
• Signal Protocol
• Many cryptocurrency systems

• Official recognition: Added to NIST-approved curves in February 2023.
• SP 800-186: “Recommendations for Discrete Logarithm-based Cryptography”
• Took 17 years for official government approval!

• Trust through transparency: Clear parameter origins make Curve25519 more
trustworthy than NIST curves.

• Related: Ed25519 for digital signatures using the same curve.
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Other curves in the ecosystem

• Legacy national standards:
• ANSSI curves (France): Constants of unknown origin, no unified addition.
• Brainpool curves (Germany): Similar issues to ANSSI curves.

• Modern alternatives:
• Curve41417: Variant of Curve25519 with higher security ( 200 bits).
• Ed448-Goldilocks: 448-bit curve (RFC 8032, 2014).
• Aranha et al. curves: Six high-security curves (rarely used).

• Ristretto initiative: Technique for safe point representation.
• Constructs prime-order groups from non-prime-order curves.
• Eliminates certain structural risks.
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Practical curve selection guidance

• For new projects: Use Curve25519/Ed25519
• Excellent performance and security.
• Transparent parameter generation.
• Wide library support.
• Now NIST-approved for government use.

• For government/compliance: NIST P-256 is still widely accepted
• Required by some standards and regulations.
• Well-audited implementations available.
• Despite parameter concerns, no known weaknesses.

• Avoid: Legacy curves with unknown parameter origins
• ANSSI, Brainpool curves.
• Curves without unified addition laws.

• Future-proofing: Consider post-quantum alternatives for long-term security.
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How things can go wrong

• ECC complexity brings risks: More parameters than RSA create a larger attack
surface.

• Implementation vulnerabilities:
• Side-channel attacks on big-number arithmetic.
• Timing attacks when computation time depends on secret values.
• Point validation failures.

• Design-level vulnerabilities:
• Bad randomness in signature generation.
• Invalid curve attacks on key exchange.
• Inconsistent validation rules across implementations.

• Let’s examine three major categories of ECC vulnerabilities.
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ECDSA with bad randomness

• ECDSA signing requires randomness: Each signature uses a secret random
number 𝑘.

𝑠 = ℎ + 𝑟𝑑
𝑘 mod 𝑛

• The catastrophic mistake: Reusing the same 𝑘 for two different messages.
• Attack scenario: If 𝑘 is reused:

• Attacker gets: 𝑠1 =
ℎ1+𝑟𝑑
𝑘

and 𝑠2 =
ℎ2+𝑟𝑑
𝑘

• Compute: 𝑠1 − 𝑠2 =
ℎ1−ℎ2
𝑘

• Recover randomness: 𝑘 = ℎ1−ℎ2
𝑠1−𝑠2

• Recover private key: 𝑑 = 𝑠𝑘−ℎ
𝑟

• Why this is devastating: Complete private key recovery from just two signatures.
• Prevention: Always use cryptographically secure random number generation.
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Case study: PlayStation 3 hack (2010)

• The vulnerability: Sony’s PlayStation 3 reused the same 𝑘 value to sign different
games.

• Discovery: fail0verflow team at 27th Chaos Communication Congress.
• Attack process:

• Collected ECDSA signatures frommultiple PS3 games.
• Noticed identical 𝑟 values (indicating same 𝑘).
• Applied the mathematical attack to recover Sony’s signing key.

• Consequences:
• Attackers could sign any program to run on PS3.
• Homebrew software and piracy became possible.
• Sony had to revoke and update their entire signing infrastructure.

• Lesson: Even major companies can make fundamental cryptographic mistakes.
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Invalid curve attacks

• The vulnerability: ECDH implementations that don’t validate input points.
• Mathematical insight: Point addition formulas don’t use the 𝑏 coefficient:

𝑃 + 𝑄 only depends on coordinates of 𝑃,𝑄 and coefficient 𝑎

• Attack scenario:
• Alice and Bob agree on curve and base point 𝐺.
• Bob sends legitimate public key 𝑏𝐺.
• Alice sends point 𝑃 from a different, weaker curve.
• Bob computes “shared secret” 𝑏𝑃 on the wrong curve.

• Why this works: Addition formulas work the same way on the wrong curve.
• Attacker’s advantage: Choose 𝑃 from a curve with weak discrete logarithm.
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Invalid curve attack: Themathematics

• Attacker’s strategy: Choose point 𝑃 with small order on a weak curve.
• Small order means 𝑘𝑃 = 𝒪 for relatively small 𝑘.
• Bob computes 𝑏𝑃, which also has small order.

• Attack execution:
• Bob believes he computed shared secret 𝑏𝑃.
• He hashes 𝑏𝑃 and uses result as encryption key.
• Since 𝑏𝑃 belongs to small subgroup, attacker can brute-force it.

• Real-world example: Found in TLS-ECDH implementations (2015).
• Paper: “Practical Invalid Curve Attacks on TLS-ECDH”a
• Jager, Schwenk, and Somorovsky

• Prevention: Always validate that points satisfy the correct curve equation.

ahttps://appliedcryptography.page/papers/invalid-curve.pdf
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Invalid curve attack prevention

• Point validation: Before using any received point 𝑃 = (𝑥, 𝑦):

Check: 𝑦2 ?= 𝑥3 + 𝑎𝑥 + 𝑏 (mod 𝑝)

• Additional checks:
• Verify point is not the point at infinity.
• Ensure coordinates are in valid range [0, 𝑝 − 1].
• Check point has correct order (belongs to right subgroup).

• Implementation note: Many libraries now perform validation automatically.
• Defense in depth: Use curves with prime order (like Curve25519).

• Eliminates small subgroup attacks entirely.
• Even invalid points can’t exploit subgroup structure.
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Ed25519 validation inconsistencies

• Expectation: One standard should mean identical behavior across
implementations.

• Reality: Ed25519 implementations have different validation criteria.
• The problem: RFC 8032 doesn’t fully specify validation requirements.

• How to validate signature point 𝑅.
• How to validate public key point 𝐴.
• How to verify the signature equation.

• Research findings: Henry de Valence analyzed 15 Ed25519 implementations.a

• Each had different validation criteria.
• Same signature could be valid in one implementation, invalid in another.

ahttps://hdevalence.ca/blog/2020-10-04-its-25519am/
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Real-world impact of validation differences

• Consensus failures: In blockchain networks:
• Some nodes accept a signature, others reject it.
• Breaks consensus protocol assumptions.
• Can lead to network splits or transaction inconsistencies.

• Interoperability issues: Systems using different libraries may disagree.
• Security implications: Inconsistent validation can enable attacks.

• Malleability attacks.
• Signature forgery in edge cases.

• The solution: Standardization efforts like ZIP-215 (Zcash) aim to:
• Specify exact validation rules.
• Ensure all implementations behave identically.
• Prevent consensus failures.

• Lesson: Cryptographic standards must be completely unambiguous.
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Library selection: The ecosystem landscape

• Don’t implement ECC from scratch: Cryptographic implementations require
years of hardening.

• Rust ecosystem:
• ring: Fast, audited, used by major companies.
• p256, k256: RustCrypto pure-Rust implementations.
• curve25519-dalek: Ed25519/X25519 with extensive validation.

• Go ecosystem:
• crypto/elliptic: Standard library (NIST curves).
• golang.org/x/crypto/curve25519: Official X25519 implementation.
• filippo.io/edwards25519: Modern Ed25519 with clear APIs.

• Selection criteria:
• Active maintenance and security updates.
• Independent security audits.
• Constant-time guarantees.
• Clear documentation and examples.

Applied Cryptography - American University of Beirut 45/57



Performance considerations in practice

• Scalar multiplication is the bottleneck: Operations like 𝑘 ⋅ 𝐺 dominate runtime.
• Precomputation strategies:

• Store multiples of base point: 𝐺, 2𝐺, 4𝐺, 8𝐺,…
• Sliding windowmethods for arbitrary points.
• Trade memory for speed.

• Coordinate systemsmatter:
• Affine coordinates: Simple but require expensive modular inverse.
• Jacobian coordinates: Avoid inverse, faster for repeated operations.
• Montgomery ladders: Optimal for X25519-style protocols.

• Real-world impact:
• TLS handshake time directly affects user experience.
• Mobile devices: battery life and thermal constraints.
• IoT devices: limited computational resources.
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Constant-time implementation: Why it matters

• The threat: Attackers can measure timing differences to extract secrets.
• Vulnerable patterns in ECC:

• Conditional branches based on secret bits
• Variable-time modular arithmetic
• Memory access patterns that depend on secret data

• Example: Scalar multiplication timing
• Binary method: if (bit ^= 1) result += point
• Timing reveals which bits are 1 vs 0
• After enough measurements, attacker recovers private key

• Defense: Always perform the same operations regardless of secret values.
• Modern libraries handle this: But you need to choose libraries that guarantee
constant-time behavior.
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Memorymanagement and sensitive data

• The problem: Private keys in memory can be extracted by attackers.
• Attack vectors:

• Memory dumps during crashes.
• Swap files writing secrets to disk.
• Cold boot attacks on RAM.
• Process memory scanning.

• Defense strategies:
• Zero memory immediately after use.
• Use protected memory (mlock/VirtualLock).
• Hardware security modules (HSMs) for high-value keys.
• Minimize lifetime of secrets in memory.

• Language-specific considerations:
• Rust: zeroize crate for secure memory clearing.
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Testing elliptic curve implementations

• Standard test vectors: Use RFC and NIST test cases to verify correctness.
• Cross-implementation testing:

• Generate signatures with one library, verify with another.
• Perform ECDH with different implementations.
• Ensure interoperability across programming languages.

• Edge case testing:
• Point at infinity handling.
• Invalid curve points.
• Malformed signature formats.
• Zero and maximum values.

• Property-based testing:
• Verify mathematical properties: 𝑃 + 𝑄 = 𝑄 + 𝑃
• Test with random inputs within valid ranges.
• Ensure operations always produce valid outputs.
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Real-world case study: WhatsApp’s implementation

• Challenge: Secure messaging for 2+ billion users across diverse devices.
• Solution: Signal Protocol with Curve25519 and Ed25519.
• Implementation details:

• X25519 for key agreement (ECDH).
• Ed25519 for identity key signatures.
• Custom optimizations for mobile platforms.
• Cross-platform C library for consistency.

• Engineering considerations:
• Battery life optimization on mobile devices.
• Constant-time implementation to prevent side-channel attacks.
• Extensive testing across iOS, Android, and desktop platforms.
• Regular security audits by external firms.

• Lessons: Real world requires balancing security, performance, and compatibility.
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Real-world case study: TLS 1.3 performance

• Challenge: Replace RSA key exchange with elliptic curve alternatives.
• Implementation impact:

• X25519 ECDH: 40-100x faster than 2048-bit RSA key exchange.
• Smaller certificates reduce network overhead.
• Enables features like 0-RTT handshakes.

• Engineering challenges solved:
• Constant-time implementation in BoringSSL.
• Optimized assembly for common architectures.
• Fallback implementations for edge cases.

Applied Cryptography - American University of Beirut 51/57



Common implementation pitfalls

• Pitfall 1: Poor random number generation
• Using rand() instead of cryptographic RNG.
• Not seeding random generators properly.
• Reusing random values (PlayStation 3 scenario).

• Pitfall 2: Skipping input validation
• Not checking if points are on the correct curve.
• Accepting points at infinity without proper handling.
• Missing range checks on coordinates.

• Pitfall 3: Side-channel vulnerabilities
• Conditional operations based on secret data.
• Variable memory access patterns.
• Timing differences in error handling.

• Prevention: Use audited libraries, follow security guidelines, test extensively.
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Best practices for ECC implementation

• Library selection:
• Choose libraries with security audit history.
• Prefer constant-time implementations.
• Ensure active maintenance and updates.

• Development practices:
• Use standard curves (avoid custom parameters).
• Implement comprehensive input validation.
• Clear sensitive data frommemory.
• Use secure random number generation.

• Testing and deployment:
• Test with standard vectors and edge cases.
• Perform interoperability testing.
• Monitor for timing analysis vulnerabilities.
• Plan for cryptographic agility (algorithmmigration).
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Digital signatures: real-world adoption patterns

• ECDSA dominance:
• Bitcoin, Ethereum, most cryptocurrencies.
• TLS certificates (still common).
• Legacy enterprise systems.

• Ed25519 growth:
• OpenSSH default since 2014.
• Signal Protocol messaging.
• Modern certificate authorities.
• New blockchain projects (Solana, etc.)

• Migration considerations:
• Interoperability with existing systems.
• Library availability in your ecosystem.
• Compliance requirements.
• Performance requirements.
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Digital signatures: practical implementation guidelines

• For ECDSA implementations:
• Use cryptographically secure random number generator.
• Never reuse nonce values.
• Implement constant-time operations.
• Validate all input points.

• For Ed25519 implementations:
• Follow RFC 8032 specification carefully.
• Handle validation edge cases consistently.
• Use established libraries (libsodium, etc.)

• General best practices:
• Don’t implement from scratch.
• Use constant-time libraries.
• Test with standard vectors.
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Looking forward: Implementation challenges

• Post-quantum transition: ECC implementations need migration paths.
• Hybrid classical/post-quantum systems.
• Algorithm negotiation mechanisms.
• Backward compatibility requirements.
• Discussed in a future class topic!

• Formal verification: Mathematical proofs of implementation correctness.
• Projects like Cryspen’s HAX and Libcrux generate verified code.
• Higher assurance for critical applications.
• Trade-off between verification effort and deployment flexibility.
• Discussed in a future class topic!

Applied Cryptography - American University of Beirut 56/57



Applied Cryptography
CMPS 297AD/396AI
Fall 2025
Part 1: Provable Security

1.8: Elliptic Curves &
Digital Signatures

Nadim Kobeissi
https://appliedcryptography.page

https://appliedcryptography.page

	Elliptic Curves: Theory
	Digital Signatures
	Elliptic Curves: Practice

