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Cryptographic building blocks

Examples

Security goals ¢ Confidentiality: When you send a
private message on Signal, only you
and the recipient can read the
content.

* Confidentiality: Data exchanged
between Client and Server is only

known to those parties.
* Authentication: When you receive an

email from your boss, you can verify it
actually came from them.

* Authentication: If Server receives
data from Client, then Client sent it to

Server.
* Integrity: Your computer can verify

that software update downloads
haven't been tampered with during
transmission.

* Integrity: If Server modifies data
owned by Client, Client can find out.
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Security goals: more examples

* TLS (HTTPS) ensures that data exchanged between the client and the server is
confidential and that parties are authenticated.

* Allows you to log into gmail.com without your ISP learning your password.
* FileVault 2 ensures data confidentiality and integrity on your MacBook.

° Prevents thieves from accessing your data if your MacBook is stolen.
* Signal implements post-compromise security, an advanced security goal.

¢ Allows a conversation to “heal” in the event of a temporary key compromise.
* More on that later in the course.
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Why bother?

* Can't we just use access control?

* Strictly speaking, usernames and passwords can be implemented without
cryptography...

* Server checks if the password matches, or if the IP address matches, etc. before
granting access.

* What's so bad about that?

* Requires trusting the server completely

* No protection during transmission

* No way to verify integrity

* No way to establish trust between strangers

-
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The magic of cryptography

Cryptography lets us achieve what seems impossible

« Secure communication over insecure channels
* Verification without revealing secrets
* Proof of computation without redoing it

Applied Cryptography - American University of Beirut
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Section 1

Hard Problems




Hard problems

* Cryptography is largely about equating the security of a system to the difficulty
of solving a math problem that is thought to be computationally very expensive.
* With cryptography, we get security systems that we can literally mathematically
prove as secure (under assumptions).
* Also, this allows for actual magic.
* Alice and Bob meet for the first time in the same room as you.

° You are listening to everything they are saying.
* Can they exchange a secret without you learning it?
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Time for actual magic

Alice’s “public key”

i

g*modp

Bob’s “public key”

{

v

Bob

o b
Alice < g
Knows public g = 2
Knows public prime p
Generates random a K = g*® mod p = g"* mod p

Why does this work?
« Listener only knows g,p, g% g°
e Assuminga, b, p are large enough and p is prime...
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Knows public g = 2
Knows public prime p
Generates random b

Bob’s “private key”
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No known feasible computation

* The discrete logarithm problem:
* Given a finite cyclic group G, a generator g € G, and an element h € G, find the
integer x such thatg* = h
* In more concrete terms:

* Let pbealarge prime and let g be a generator of the multiplicative group Z; (all
nonzero integers modulo p).
° Given:
gEZ;,hez;
Findx € {0,1,...,p — 2} such that g* = h (mod p)
° This problem is believed to be computationally hard when pis large and gis a
primitive root modulo p.
“Believed to be” = we don’t know of any way to do it that doesn't take forever, unless
we have a strong, stable quantum computer (Shor's algorithm)
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Time for more actual magic

+ Zero-knowledge proofs allow you to prove
that you know a secret without revealing any
information about it.

* They built “zero-knowledge virtual machines”
where you can execute an entire program that
runs as a zero-knowledge proof.

» ZKP battleship game: server proves to the
players that its output to their battleship
guesses is correct, without revealing any
additional information (e.g. ship location).
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Battleship board game. Source: Hasbro
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Hard problems

Asymmetric Primitives
* Diffie-Hellman, RSA, ML-KEM, etc.

* “Asymmetric” because there is a

“public key” and a “private key” for
each party.

* Algebraic, assume the hardness of

mathematical problems (as seen just
now.)
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Symmetric Primitives
* AES, SHA-2, ChaCha20, HMAC...

* “Symmetric” because there is one
secret key.

* Notalgebraic but unstructured, but
on their understood resistance to n
years of cryptanalysis.

* Can act as substitutes for
assumptions in security proofs!

* Example: hash function assumed to

be a “random oracle”
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Hard problems

* Hard computational problems are the cornerstone of modern cryptography.

* These are problems for which even the best algorithms wouldn’t find a solution
before the sun burns out.

* They provide the security foundation for cryptographic schemes.

* Without hard problems, most of our encryption systems would collapse.
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The rise of computational complexity theory

Complexity theory provides the mathematical framework to understand what makes prob-
lems “hard".

* In the 1970s, rigorous study of hard problems led to computational complexity
theory.
* This field has had dramatic impacts beyond cryptography:
° Economics: Computational complexity of finding Nash equilibria in game theory.

* Physics: Simulating quantum many-body systems with exponential complexity.
* Biology: Protein folding prediction and DNA sequence alignment algorithms.
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Computational problems

A question that can be answered by performing a computation.
* Decision problems: Questions with “yes” or “no” answers
* Example: “Is 217 a prime number?”
* Search problems: Questions that require finding a specific value
* Example: "How many instances of ‘i’s appear in ‘incomprehensibilities”?"

* Computational problems form the foundation of theoretical computer science.
* Different types of problems require different algorithmic approaches.
* The difficulty of solving these problems is central to cryptography.
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Computational hardness

The property of computational problems for which no algorithm exists that can solve the
problem in a reasonable amount of time.

* Also called intractable problems.
* Hardness is independent of the computing device used.

* All standard computing models are equivalent in terms of what they can compute
efficiently.

* Exception: Quantum computers for certain problems.

* Hardness is a fundamental concept in computational complexity theory.
* Cryptography deliberately uses hard problems to create security.
* What's “hard” should remain hard regardless of hardware advances.
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Measuring algorithm complexity

* To evaluate computational
hardness, we need to
measure an algorithm’s
running time.

* We typically use asymptotic
analysis to express
complexity.

¢ Common notation:

* O(n): Linear time.
* O(n?): Quadratic time.
° O(2"): Exponential time.
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Measuring algorithm complexity

* To evaluate computational hardness, we need to measure an algorithm'’s
running time.
* We typically use asymptotic analysis to express complexity.
¢ Common notation:
° O(n): Linear time.
* O(n?): Quadratic time.
* O(2"): Exponential time.
* We care about how the running time grows as the input size increases.
 Example: An algorithm that takes n? operations for input size n becomes
impractical as n grows large.
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Categorizing computational hardness

Easy Problems

Solvable in polynomial time.
Examples: Sorting, searching.

Running time: O(n¢) for some
constant ¢

Generally scales reasonably with
input size.

Class P (Polynomial time).
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Hard Problems

No known polynomial-time solution.

Example: Factorizing product of two
large primes.

Running time: Often exponential, e.g,
o(2")

Becomes impractical quickly as input
grows.

Includes NP-hard, NP-complete
classes.
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Hard problems in practice

* Public-key cryptography relies on specific hard problems:

° RSA: Integer factorization problem.
* Diffie-Hellman: Discrete logarithm problem.

* Cryptography leverages these problems to maximize security assurance,

* The security of these schemes depends on the continued hardness of these
problems.
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Quantum vulnerability of hard problems

* The hard problems we rely on today (factoring, discrete logarithm) are
vulnerable to quantum computers.

* Shor's algorithm (1994) can efficiently solve both problems on a sufficiently
powerful quantum computer.
* This has motivated the search for “post-quantum” hard problems:

° Lattice-based cryptography (e.g., ML-KEM, formerly CRYSTALS-Kyber).
° Hash-based cryptography.

° Code-based cryptography.

° Multivariate cryptography.

* Isogeny-based cryptography.

* NIST is currently standardizing post-quantum cryptographic algorithms to
replace our vulnerable systems.
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What is NIST?

* NIST stands for the National Institute of
Standards and Technology.

* It'sa US. government agency that develops
technology standards. Paarut Buttr

* In cryptography, NIST:

° Sets security standards used worldwide.
* Evaluates and approves cryptographic

SKU: 2387
Availability: Available for Purchase

Price: $1,217.00

Please login

algorithms.
° Currently leading the standardization of
NIST's “Standard Reference Peanut Butter”,
post-quantum cryptography. available for only §1217 USD!

* When NIST standardizes an algorithm, it often
becomes the global industry standard.
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Funny things standardized by NIST

+ Standard Reference Peanut Butter: for calibrating food testing equipment.

* The “Odor Unit": for standardizing measurements of smell intensity in
environmental monitoring.

* The Standard Banana Equivalent Dose (BED): for comparing radiation exposure
levels to the natural radiation in a banana.

* Toilet Paper Testing: for measuring strength, absorbency, and softness of toilet
paper products.
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Cryptographic algorithms standardized by NIST

* AES (Advanced Encryption Standard): Selected in 2001 to replace DES, now the
worldwide standard for symmetric encryption.

* SHA-2 and SHA-3 (Secure Hash Algorithms): Cryptographic hash functions used
for digital signatures and data integrity.

+ DSA and ECDSA: Digital Signature Algorithms based on the discrete logarithm
problem.

* Triple DES: An interim standard before AES that enhanced the security of the
original DES.

* ML-KEM and ML-DSA: Recently standardized post-quantum public-key
cryptography and signature schemes.
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Why hard problems matter

* Hard problems create asymmetry between legitimate users and attackers.
* Easy in one direction, difficult in the reverse.

* Example: Easy to multiply large primes, hard to factor the product.

* This asymmetry is what enables secure communication!
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What are complexity classes?

A group of computational problems that share similar resource requirements (time, memory,
etc.).

* Example: All problems solvable in O(n?) time form one class.
* Different classes represent different levels of computational difficulty.

* Understanding these classes helps us categorize cryptographic problems.
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TIME complexity classes

TIME(f(n)) = class of problems solvable in time O(f(n))
* Examples:

* TIME(n?) = problems solvable in O(n?) time
* TIME(n?) = problems solvable in O(n?) time
* TIME(2™) = problems solvable in O(2") time

Key insight: If you can solve a problem in O(n?) time, you can also solve it in
O(n?) time.

Therefore: TIME(n?) C TIME(n®) C TIME(n*) C ...
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The class P (Polynomial time)

The union of all TIME(#¥) classes for all constants k.
* P =TIME(n)uU TIME(n?)u TIME(n?) U ...
* Contains all problems solvable in polynomial time.
* Generally considered “efficiently solvable”.

* Most practical algorithms we use daily are in class P.
* Examples: Sorting, searching, basic arithmetic.

* Cryptography often relies on problems not in P!
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SPACE complexity classes

* Time isn't everything—memory usage matters too!

* Asingle memory access can be orders of magnitude slower than CPU operations.
SPACE(f(n)) = class of problems solvable using O(f(n)) bits of memory

* Examples:

* SPACE(n) = problems using O(n) memory
* SPACE(n?) = problems using O(n?) memory

PSPACE = union of all SPACE(r¥) for constants k
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Relationship between TIME and SPACE

* Key insight: Any algorithm running in time f(n) uses at most f(n) memory.
* Why? You can write at most one bit per time unit.

* Therefore: TIME(f(n)) C SPACE(f(n))

* This gives us: P C PSPACE

* Important: Low memory doesn’t guarantee fast execution!
* Example: Brute-force key search uses little memory but takes forever.
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The class NP (Nondeterministic Polynomial time)

The class of decision problems for which you can verify a solution in polynomial time, even
if finding the solution is hard.

* Key insight: Easy to check, hard to find!

* Given a potential solution, you can run a polynomial-time algorithm to verify if
it's correct.

* You don't need to find the solution efficiently—only verify it efficiently.

* Relationship: P C NP (if you can solve it quickly, you can certainly verify it
quickly)
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NP: A cryptographic example

Problem: Given plaintext P and ciphertext C, does there exist a key K such that
C = E(K,P)?
* Finding the solution: Could take exponential time (brute-force key search)
* Verifying a candidate solution: Given a potential key K:

1. Compute E(K, P)
2. Checkif E(Ky,P)=C
3. Return "yes” if they match, “no” otherwise

* This verification runs in polynomial time!

* Therefore, this key recovery problem is in NP.
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What's NOT in NP?

* Known-ciphertext attacks: You only have E(K, P) values for random unknown
plaintexts P.
* How do you verify if candidate key K, is correct?
* You don't know what the plaintexts should be!
° Can't express this as a decision problem with efficient verification.
* Proving absence of solutions: “Does there exist NO solution to this problem?”
* To verify “no solution exists,” you might need to check all possible inputs.
* If there are exponentially many inputs, this takes exponential time.
° Therefore, proving non-existence is generally not in NP.
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NP-complete problems

The hardest decision problems in the class NP.
* No known polynomial-time algorithms exist for worst-case instances.

* If any NP-complete problem can be solved efficiently, then all problems in NP can be
solved efficiently.

* Discovered in the 1970s during the development of complexity theory.

* Remarkable discovery: All NP-complete problems are fundamentally equally
hard!

* Examples: Boolean satisfiability (SAT), traveling salesman problem, graph
coloring.
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Why are NP-complete problems equally hard?

* Key insight: You can reduce any NP-complete problem to any other
NP-complete problem.
* Reduction: Transform one problem into another in polynomial time.
* If you can solve problem B efficiently, you can solve problem A efficiently too.

* Mathematical equivalence: Different NP-complete problems may look
completely different but are fundamentally the same from a computational
perspective.

 Consequence: Solving any single NP-complete problem efficiently would solve
all problems in NP efficiently!

* This would prove that P = NP (one of the biggest open questions in computer
science).
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The remarkable equivalence of NP-complete problems

These problems look completely different...

Boolean Logic

Can you set variables to make
this formula true?

(6 Vx) A(x VX3) A

Travel Planning Sudoku Puzzles
What's the shortest route Can you fill this 9x9 grid
visiting all cities exactly once?  following the rules?

..but they’re computationally identical!

Applied Cryptography - American University of Beirut
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Concrete examples of equivalent problems

* 3-SAT (Boolean satisfiability): Given a logical formula, can you set the variables
to make it true?

° Example: (x; VX, V X3) A (X1 V X5 V OX3) A
* Traveling Salesman Problem: Given cities and distances, what's the shortest
route visiting each city exactly once?
* Looks like a geometry/optimization problem!

* Graph Coloring: Can you color a graph’s vertices with k colors so no adjacent
vertices share a color?

* Looks like a combinatorial puzzle!
* Subset Sum: Given a set of integers, is there a subset that sums to exactly k?
* Looks like an arithmetic problem!
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The magic of reductions

r )

A polynomial-time transformation that converts any instance of problem A into an equiva-
lent instance of problem B.

* You can transform any Sudoku puzzle into a Boolean logic formula!
* The Sudoku has a solution < the formula is satisfiable

* You can transform any traveling salesman instance into a graph coloring
problem!

* You can transform any Boolean formula into a subset sum problem!
* These transformations preserve the “yes/no” answer and run in polynomial time.

* Mind-blowing consequence: Solve Sudoku efficiently = solve all of theoretical
computer science!
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Real-world impact of this equivalence

* Good news: Any algorithmic breakthrough on one NP-complete problem
immediately applies to thousands of others!

* Better SAT solvers = better protein folding, circuit design, Al planning...

* Sobering reality: 50+ years of computer science research suggests these
problems are fundamentally hard.

* Despite massive incentives (millions in prize money, practical applications worth
billions)
* Cryptographic relevance: We rely on NP-complete problems being hard for
certain security models.
* Though most practical cryptography uses different hard problems (factoring,
discrete log)
* Universal truth: The computational universe has these deep, hidden
connections that unite seemingly unrelated problems.
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Fun fact: Nintendo games are NP-hard!

* Games proven NP-hard":
° Super Mario Bros. 1-3, The Lost Levels, Super Mario World
* Donkey Kong Country 1-3
* All classic Legend of Zelda games
* All classic Metroid games
* All classic Pokémon role-playing games
* The catch: “Generalized versions” with arbitrarily large levels.

* Real Nintendo levels are designed to be solvable by humans.
° But the mathematical structure of these games is inherently complex.

* Coolinsight: Video games naturally encode complex computational problems!

Ahttps://appliedcryptography.page/papers/nintendo-hard.pdf
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The P vs. NP Problem

One of the most important unsolved problems in computer science and mathematics.
* Question: Does P = NP?

* Translation: Are there problems that are easy to verify but fundamentally hard to
solve?

* If you could solve any NP-complete problem in polynomial time, then you could
solve all NP problems in polynomial time.

* This would mean P = NP.

* Intuition says: Surely some problems are easy to check but hard to find!
* Example: Brute-force key recovery seems inherently exponential-time...
* Reality: No one has proved this mathematically!
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The million-dollar question

* The Clay Mathematics Institute offers $1,000,000 for solving P vs. NP.
* One of seven “Millennium Prize Problems”.

* Renowned complexity theorist Scott Aaronson called it “one of the deepest
questions that human beings have ever asked”.

* To win: Prove either P = NP or P # NP.

* Over 50 years of research, no solution yet!
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What if P = NP?

The cryptographic apocalypse scenario

* If P = NP, then any easily checked solution would also be easy to find.
* Symmetric cryptography would be completely broken:

* Key recovery becomes polynomial-time.
° AES, ChaCha20, all symmetric ciphers become useless.

* Hash functions would be invertible in polynomial time:

* Finding preimages becomes easy.
* Digital signatures, password storage, all broken.

* All of modern cryptography would collapse overnight!

* Butalso: We could solve protein folding, optimize supply chains perfectly, solve
climate modeling...
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Why we don’t panic

* Overwhelming consensus: Most complexity theorists believe P # NP.

* Intuitive reasoning: Problems that look hard actually are hard.

* The structure of reality: Easy-to-verify but hard-to-solve problems seem
fundamental to the universe.

50+ years of evidence: Despite massive incentives, no polynomial-time
algorithms found for NP-complete problems.

* Current belief: P is a strict subset of NP, with NP-complete problems outside P.

™

)

* Proving P = NP: Need only one polynomial-time algorithm for one NP-complete
problem

* Proving P # NP: Must prove no such algorithm can ever exist—much harder!
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Why NP-complete problems don’t work for cryptography

* Tempting idea: Base cryptography on NP-complete problems for provable
security!
* The dream: Prove that breaking some cipher is NP-hard.
* Security would be guaranteed as long as P # NP.

* Reality is disappointing: NP-complete problems are hard in the worst case, not
the average case

* The structure that makes them hard can make specific instances easy.
° Cryptography needs problems that are hard for random instances.

* What we actually use: Problems that are probably not NP-hard.

° Factoring, discrete logarithm, lattice problems.
° Believed hard on average, but not proven NP-complete.
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NP-complete vs. NP-hard

NP-Complete Problems

* Must be decision problems (yes/no
answers)

* You can verify solutions in polynomial
time

* Examples: 3-SAT, graph coloring,
subset sum

* The “sweet spot” of hardness

Applied Cryptography - American University of Beirut

NP-Hard Problems

Can be any type of problem
(optimization, etc.)

May not have polynomial-time
verification

Examples: Traveling salesman
optimization, halting problem

Can be even harder than
NP-complete!
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Average-case vs. worst-case hardness

Worst-case hardness (NP-complete) Average-case hardness (Crypto)
* Some instances of the problem are * Random instances are typically hard.
very hard. * Few (if any) easy instances.
* Other instances might be easy. « Example: Factoring random large
* Example: 3-SAT has hard instances, integers.
but also trivial ones. « Perfect for cryptographic
* Not suitable for cryptography. applications.

L We need problems where almost every instance is hard, not just the worst ones.

Applied Cryptography - American University of Beirut
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Section 2

Diffie-Hellman




Time for actual magic

Alice’s “public key”

i

g*modp

Bob’s “public key”

{

v

Bob

o b
Alice < g
Knows public g = 2
Knows public prime p
Generates random a K = g*® mod p = g"* mod p

Why does this work?
« Listener only knows g,p, g% g°
e Assuminga, b, p are large enough and p is prime...
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Knows public g = 2
Knows public prime p
Generates random b

Bob’s “private key”
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The key exchange problem

* Alice and Bob want to communicate securely over the internet.
* They've never met before and share no secrets.

* How can they establish a shared secret key for encryption?

* Traditional approach: meet in person, exchange keys physically.
* Problem: This doesn't scale for the internet!

Createashared secret between two parties who have never communicated before, even when
an eavesdropper can see everything they send to each other.
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The magic of Diffie-Hellman

» Whitfield Diffie and Martin Hellman solved this “impossible” problem.
* Their solution came one year before RSA (1977).
* Uses the discrete logarithm problem as its foundation.

* Allows two strangers to create a shared secret in public!

This was the birth of modern cryptography
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What makes discrete logarithm hard?

* Remember: we need problems that are easy in one direction, hard in reverse.
* Easy direction: Given g and x, compute g*¥ mod p
* Example: 2!° mod 17 = 1024 mod 17 = 4
* Hard direction: Given g, p, and g*¥ mod p, find x
* Example: Given g = 2, p = 17, and result = 4, find x = 10
* For small numbers, this is easy. For huge numbers (thousands of bits), it's
computationally infeasible!
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A simple example

Let's work with small numbers to see the pattern:

* Let p =17 (a prime) and g = 2 (a generator)
* Computing powers is easy:
* 2! mod 17 =2
* 22mod 17 = 4
* 2>mod 17 =38
* 2*mod 17 =16
* 2°mod 17 = 15
* Finding the exponent is harder:
* Given result 15, can you quickly find that the exponent was 5?
* With small numbers: yes, by trying all possibilities
* With 2048-bit numbers: practically impossible!

Applied Cryptography - American University of Beirut
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Mathematical groups: the foundation

A set of elements with an operation that follows specific rules.
* Think of it as a mathematical playground with consistent rules.
* For cryptography, we use Z;: numbers {1,2,3, ..., p — 1} with multiplication mod p.

« Example: Z¢ = {1, 2, 3,4} with multiplication mod 5
* 3X4=12mod 5=2
*2X3=6mod5=1

* The “rules” ensure the math works consistently for cryptography.
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Group rules (simplified)

For our cryptographic group Z;, these rules always hold:
* Closure: Multiplying any two elements gives another element in the group
° InZz%:2x 3 =1 (stillin the group!)
* Identity: There's a special element (1) that doesn’t change others
* 1x4=4,1x2=2e¢tc
* Inverses: Every element has a “partner” that multiplies to 1
° InZ;:2x 3 =1,s02and 3 are inverses

* Associativity: (a xb)xc=ax (bxc)

Why care? These rules guarantee that our cryptographic operations will behave
predictably!
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Generators: the special elements

L An element g whose powers g!, g2, g3, ... produce every element in the group.

* InZi let'stryg = 2:

* 2lmod5=2
* 22mod5=4
* 2mod5=3
* 2*mod5=1

* We got {2,4, 3,1} - that's all elements! So g = 2 is a generator.
* Generators are crucial: They let us express every group element as a power of g.

Applied Cryptography - American University of Beirut 56/81



The discrete logarithm problem (DLP)

L Given g, p, and h = g¥ mod p, find the secret exponent x.

* “Discrete” because we work with integers, not real numbers
* “Logarithm” because we're finding the exponent (like log,(8) = 3)
* Example: Giveng =2, p =17, h = 8, find x such that 2* = 8 (mod 17)

* Answer: x = 3 (since 23 = 8)
° Easy with small numbers, hard with large ones!

* For cryptographic-sized numbers (2048+ bits), no efficient algorithm is known.
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DLP vs. factoring: equally hard

Factoring Problem Discrete Logarithm
* GivenN = p x q,find pand q * Given g* mod p, find x
* Used in RSA (1977) * Used in Diffie-Hellman (1976)
* Well-known, intuitive * Less intuitive, more mathematical

* Security equivalence: n-bit factoring ~ n-bit discrete logarithm
* Both are vulnerable to Shor's quantum algorithm
* Both are not known to be NP-hard

* Algorithms for both problems share similar techniques
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Diffie-Hellman: the mathematical version

Setup: Alice and Bob agree on public values g (generator) and p (large prime)

1. Alice: Chooses secret a, computes A = g? mod p, sends A to Bob

2. Bob: Chooses secret b, computes B = g? mod p, sends B to Alice

3. Alice: Computes shared secret S = B mod p = (g?)% mod p = g%’ mod p
4. Bob: Computes shared secret S = A? mod p = (g%)? mod p = g% mod p

Result: Alice and Bob both have S = g% mod p without ever sharing a or b!
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Diffie-Hellman example with small numbers

Public parameters: g =2, p =17

1. Alice: Picks secreta = 6
* Computes A = 26 mod 17 = 64 mod 17 = 13
* Sends A = 13 to Bob
2. Bob: Picks secretb = 10
* Computes B = 2'° mod 17 = 1024 mod 17 = 4
* Sends B = 4 to Alice
3. Both compute shared secret:
* Alice: S = 4% mod 17 = 4096 mod 17 = 9
* Bob: S=13"mod 17=...=9

Shared secret: S = 9 (which equals 26%1° mod 17)
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The computational Diffie-Hellman (CDH) problem

Given g% mod p and g? mod p, compute the shared secret g2® mod p without knowing the
secret values a and b.

* Motivation: Even if an eavesdropper captures the public values g* and g?, they
shouldn't be able to determine the shared secret g?.
* Example: Given A = 13 and B = 4 from our earlier example, can you compute
S=9?
¢ Without knowing a = 6 and b = 10, this becomes very difficult!
* Real-world relevance: This is exactly what an attacker faces when trying to
break Diffie-Hellman.
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CDH vs. DLP: the relationship

* Key insight: If you can solve DLP, then you can also solve CDH.

* Given g% and g?, use DLP to find a and b
* Then compute g directly

* Mathematical relationship: DLP is at least as hard as CDH.
* CDH < DLP (CDH reduces to DLP)
* Open question: Is CDH at least as hard as DLP?

* We don't know if solving CDH allows you to solve DLP!
* Maybe there’s a clever way to compute g?? without finding a and b

* Security assumption: We assume CDH is hard even if it's easier than DLP.
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The decisional Diffie-Hellman (DDH) problem

Given g mod p, g? mod p, and a value X that is either:
. gab mod p (the real shared secret), or
* g° mod p for some random ¢
..determine which one X is (each choice has probability 1/2).

* Why do we need this? Indistinguishability!
* What if an attacker can compute the first 32 bits of g?2?
° CDHisn't completely broken, but the attacker learned something.
* This partial information might compromise application security.
* DDH ensures: The shared secret g?° is indistinguishable from a random group
element.
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DDH vs. CDH: the hierarchy

* Key relationship: If you can solve CDH, then you can solve DDH.

* Given (g%, gP,X), use CDH to compute g
¢ Check if X = g%; if yes, then X is the real shared secret

* Hardness hierarchy: DDH < CDH < DLP

* DDH is fundamentally easier than CDH.
* CDH is (probably) easier than DLP.

* Surprising fact: DDH is not hard in certain groups!

* InZ;, DDH can be broken using pairing-based techniques.
* But CDH remains hard in the same group.

* Solution: Use elliptic curve groups where DDH is believed hard.
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Why DDH matters in cryptography

* Indistinguishability: DDH ensures that shared secrets “look random”.

* Critical for encryption schemes and key derivation.
* Prevents attackers from learning partial information.

* Security proofs: Many cryptographic protocols prove security under DDH.
° ElGamal encryption.
* Cramer-Shoup cryptosystem.
* Various authenticated key exchange protocols.
* Real-world impact: Even though DDH is “weaker” than CDH, it's one of the most
studied and used assumptions.
° Provides stronger security guarantees for applications.
* Enables more sophisticated cryptographic constructions.
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Real-world Diffie-Hellman

* TLS/HTTPS: Your browser uses Diffie-Hellman to establish secure connections.
* Signal: Uses elliptic-curve Diffie-Hellman for key exchange.

SSH: Secure shell connections use Diffie-Hellman for key agreement.

* VPNs: Many VPN protocols rely on Diffie-Hellman for establishing tunnels.

¢ Elliptic Curve Diffie-Hellman (ECDH): Same idea, different mathematical group.
* Post-quantum alternatives: New key exchange methods for the quantum era.

More on both of the above in future course topics!
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Diffie-Hellman key exchange in practice

How does this actually work in the real world?

1. Parameter generation: Choose secure values for pand g

* pmust be a large prime (2048+ bits)
* g must be a generator of a large subgroup

2. Key generation: Each party picks a random secret

* Alice picks a randomly from {1,2, ..., p — 2}
* Bob picks b randomly from {1,2, ..., p — 2}

3. Public key computation: Each party computes their public value
4. Key exchange: Public values are sent over the network
5. Shared secret derivation: Each party computes the final shared secret
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TLS handshake: Diffie-Hellman in action

When you visit https://gmail.com, here’s what happens:

1. Client Hello: Your browser says “l want to talk securely”
2. Server Hello: Gmail's server responds with its certificate and DH parameters
* Includes p, g and server's public value g? mod p

3. Client Key Exchange: Your browser generates its own secret a and sends
g% mod p
4. Secret computation: Both sides compute g*® mod p
5. Key derivation: The shared secret is used to derive encryption keys
6. Secure communication: All further messages are encrypted with these keys

Result: Your password is encrypted before leaving your computer!
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Signal's double ratchet: DH everywhere

* Initial key exchange: Uses X3DH (Extended Triple DH)
* Combines three DH key exchanges for security.
* Works even when recipient is offline (“asynchronous”
protocol).?
* Ongoing communication: Uses Double Ratchet

* New DH key exchange for every message!
* Provides “forward secrecy” and “post-compromise

security”.
* If your phone gets compromised today, yesterday's
5 Signal uses DH key exchange
messages remain secure. dozens, hundreds of times per
* If your phone recovers from compromise, tomorrow’s conversation.

messages are secure again.

AEverything on this slide will be covered in much more detail later in the course.
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The dark side: unauthenticated Diffie-Hellman

But there's a serious problem...

* The vulnerability: Basic DH has no authentication
* Alice can't verify she's talking to Bob
° Bob can't verify he's talking to Alice

* The attack: Man-in-the-middle (MITM)

* Mallory sits between Alice and Bob

* Alice does DH with Mallory, thinking it's Bob
° Bob does DH with Mallory, thinking it's Alice
* Mallory can read and modify everything!

* Real-world impact: This attack is practical and devastating!
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Man-in-the-middle attack on DH

How Mallory breaks “secure” communication:

Alice — Mallory: Alice sends g (thinking it goes to Bob)
Mallory — Bob: Mallory sends g™ (Bob thinks it's from Alice)
Bob — Mallory: Bob sends g? (thinking it goes to Alice)
Mallory — Alice: Mallory sends g™ (Alice thinks it's from Bob)
Result:
* Alice and Mallory share secret g®™
* Bob and Mallory share secret gb™
* Alice and Bob don't share any secret!
6. Communication: Alice encrypts with g™, Mallory decrypts, reads/modifies,
re-encrypts with g? for Bob

s WwWwnN

Alice and Bob never know they’ve been compromised!
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Why MITM attacks succeed

* Public values look random: g% and g™ are indistinguishable.

° Both appear to be random group elements.
* No way to tell if they come from the intended party.

* No identity verification: DH only establishes a shared secret.

* Doesn't prove who you're sharing it with!
* Like agreeing on a secret handshake with someone wearing a mask.

* Active vs. passive attacks:

* DH protects against passive eavesdropping.
* Does nothing against active manipulation.

* Historical impact: This attack has compromised real systems for decades.
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Solution: Authenticated Key Exchange

/)

Key exchange that verifies the identity of the parties involved, preventing man-in-the-middle
attacks.

* Coreidea: Combine DH with authentication mechanisms

* Common approaches:
* Digital signatures: Sign the DH public values (TLS).
° Pre-shared keys: Use existing shared secrets (IPsec).
° Certificates: Use a trusted third party (Certificate Authority in HTTPS).
° Password-based: Derive authentication from passwords (SRP protocols).

* Goal: Ensure that Alice and Bob can verify they're really talking to each other.
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TLS: authenticated DH with certificates

How HTTPS prevents MITM attacks:
1. Server authentication: Gmail sends its certificate along with g?

* Certificate proves “this DH value really came from gmail.com”
* Signed by a trusted Certificate Authority (CA)

2. Certificate verification: Your browser checks:

* Is the signature valid?

* Isthe CA trusted?

° Does the certificate match “gmail.com”?
° Has the certificate expired?

3. If verification passes: You know you're really talking to Gmail
4. If verification fails: Browser shows scary warnings!
Result: MITM attacks become much harder (but not impossible!)
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Signal: authenticated DH with fingerprints

* The bootstrapping problem: How do Alice and Bob D R
initially authenticate?

* No pre-existing certificates.
° No trusted third parties.

* Signal's solution: Security numbers (fingerprints)
* Each conversation gets a unique 60-digit number.
* Derived from both parties’ long-term identity keys.
5 .ﬁ . . 06868 24657 17064 57106
Manual verification: Users compare numbers 34765 50376 35697 16819
out-of-band.

* Read over the phone...
* Show in person...
* Send via different app... Signal security number

verification screen.

Tap to Scan
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SSH: authenticated DH with host keys

How SSH prevents server impersonation:
* First connection: Server presents its “host key” along with DH public value

* SSH shows you a fingerprint: SHA256:ABC123 ...
° You're supposed to verify this out-of-band (but nobody does!)

* Trust on first use (TOFU): Client remembers the host key
* Storedin ~/.ssh/known_hosts
* Subsequent connections: Client checks if host key matches

¢ If different, gives you a heart attack: WARNING: REMOTE HOST IDENTIFICATION
HAS CHANGED!
* If same: Connection proceeds normally

* User authentication: Usually with passwords or public keys

Weakness: TOFU is vulnerable on the very first connection!
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Modern implementations: elliptic curves

Elliptic Curve DH (ECDH)
* Uses elliptic curve groups

* 256-bit keys ~ 2048-bit traditional
DH

* Much faster computations

Traditional DH
e Uses Z;; (integers mod p)
* Requires 2048+ bit numbers
* Slower computations
* Larger public keys * Smaller public keys, less bandwidth
* Popular curves: P-256, P-384, X25519, X448
* Same security: Based on elliptic curve discrete logarithm problem
* Real-world adoption: ECDH is now standard in TLS, Signal, etc.
* Performance matters: Especially important for mobile devices and loT
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The quantum threat to Diffie-Hellman

All DH variants are doomed...

* Shor’s algorithm (1994) can break DH on quantum computers.
* Solves discrete logarithm in polynomial time.
* Works for both traditional DH and ECDH.

* Timeline concerns:

° Large quantum computers don't exist yet.
° But adversaries might store encrypted data now, decrypt later.
° “Harvest now, decrypt later” attacks.

* Post-quantum key exchange: New algorithms under development.

° ML-KEM (based on lattice problems)
° SIDH/SIKE (based on isogenies, but recently broken!)
* Code-based and hash-based alternatives
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Lessons from 50 years of Diffie-Hellman

* Elegant mathematics: Simple idea with profound implications.
* Two numbers raised to secret powers in a mathematical group.
* Security requires more than math: Authentication is crucial.

* Pure DH is vulnerable to active attacks.
* Real systems need identity verification.

* Efficiency drives adoption: Elliptic curves made DH practical everywhere.
* Performance improvements enable new applications.

* Future challenges: Quantum computers will force reinvention.
* But the core insight—shared secrets from public exchanges—will survive.

* Cryptography is a living field: Continuous evolution and adaptation.
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From hard problems to real-world security

The journey we've traced

1. Mathematical insight: Discrete logarithm is hard to compute.
2. Cryptographic innovation: Diffie-Hellman key exchange leverages this hardness.
3. Real-world impact: Secure communication for billions of people daily.

This is the power of applied cryptography: transforming abstract mathematical
problems into tools that help people and protect our digital lives.
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