
Applied Cryptography
CMPS 297AD/396AI
Fall 2025
Part 1: Provable Security

1.7: Hard Problems &
Diffie-Hellman

Nadim Kobeissi
https://appliedcryptography.page

https://appliedcryptography.page

How it’s made

Fischer et al., The Challenges of Bringing Cryptography from Research Papers to Products: Results from an Interview Study
with Experts, USENIX Security 2024

Applied Cryptography - American University of Beirut 2/81

Cryptographic building blocks

Security goals
• Confidentiality: Data exchanged
between Client and Server is only
known to those parties.

• Authentication: If Server receives
data from Client, then Client sent it to
Server.

• Integrity: If Server modifies data
owned by Client, Client can find out.

Examples
• Confidentiality: When you send a
private message on Signal, only you
and the recipient can read the
content.

• Authentication: When you receive an
email from your boss, you can verify it
actually came from them.

• Integrity: Your computer can verify
that software update downloads
haven’t been tampered with during
transmission.

Applied Cryptography - American University of Beirut 3/81

Security goals: more examples

• TLS (HTTPS) ensures that data exchanged between the client and the server is
confidential and that parties are authenticated.
• Allows you to log into gmail.com without your ISP learning your password.

• FileVault 2 ensures data confidentiality and integrity on your MacBook.
• Prevents thieves from accessing your data if your MacBook is stolen.

• Signal implements post-compromise security, an advanced security goal.
• Allows a conversation to “heal” in the event of a temporary key compromise.
• More on that later in the course.

Applied Cryptography - American University of Beirut 4/81

Why bother?

• Can’t we just use access control?
• Strictly speaking, usernames and passwords can be implemented without
cryptography…

• Server checks if the password matches, or if the IP address matches, etc. before
granting access.

• What’s so bad about that?

The Problemwith Traditional Access Control

• Requires trusting the server completely
• No protection during transmission
• No way to verify integrity
• No way to establish trust between strangers

Applied Cryptography - American University of Beirut 5/81

Themagic of cryptography

Cryptography lets us achieve what seems impossible

• Secure communication over insecure channels
• Verification without revealing secrets
• Proof of computation without redoing it

Applied Cryptography - American University of Beirut 6/81

Section 1

Hard Problems

Hard problems

• Cryptography is largely about equating the security of a system to the difficulty
of solving a math problem that is thought to be computationally very expensive.

• With cryptography, we get security systems that we can literally mathematically
prove as secure (under assumptions).

• Also, this allows for actual magic.
• Alice and Bob meet for the first time in the same room as you.
• You are listening to everything they are saying.
• Can they exchange a secret without you learning it?

Applied Cryptography - American University of Beirut 8/81

Time for actual magic

Applied Cryptography - American University of Beirut 9/81

No known feasible computation

• The discrete logarithm problem:
• Given a finite cyclic group 𝐺, a generator 𝑔 ∈ 𝐺, and an element ℎ ∈ 𝐺, find the
integer 𝑥 such that 𝑔𝑥 = ℎ

• In more concrete terms:
• Let 𝑝 be a large prime and let 𝑔 be a generator of the multiplicative group ℤ∗𝑝 (all
nonzero integers modulo 𝑝).

• Given:
• 𝑔 ∈ ℤ∗

𝑝, ℎ ∈ ℤ∗
𝑝

• Find 𝑥 ∈ {0, 1,… ,𝑝 − 2} such that 𝑔𝑥 ≡ ℎ (mod 𝑝)
• This problem is believed to be computationally hard when 𝑝 is large and 𝑔 is a
primitive root modulo 𝑝.

• “Believed to be” = we don’t know of any way to do it that doesn’t take forever, unless
we have a strong, stable quantum computer (Shor’s algorithm)

Applied Cryptography - American University of Beirut 10/81

Time for more actual magic

• Zero-knowledge proofs allow you to prove
that you know a secret without revealing any
information about it.

• They built “zero-knowledge virtual machines”
where you can execute an entire program that
runs as a zero-knowledge proof.

• ZKP battleship game: server proves to the
players that its output to their battleship
guesses is correct, without revealing any
additional information (e.g. ship location).

Battleship board game. Source: Hasbro

Applied Cryptography - American University of Beirut 11/81

Hard problems

Asymmetric Primitives
• Diffie-Hellman, RSA, ML-KEM, etc.
• “Asymmetric” because there is a
“public key” and a “private key” for
each party.

• Algebraic, assume the hardness of
mathematical problems (as seen just
now.)

Symmetric Primitives
• AES, SHA-2, ChaCha20, HMAC…
• “Symmetric” because there is one
secret key.

• Not algebraic but unstructured, but
on their understood resistance to 𝑛
years of cryptanalysis.

• Can act as substitutes for
assumptions in security proofs!
• Example: hash function assumed to
be a “random oracle”

Applied Cryptography - American University of Beirut 12/81

Hard problems

• Hard computational problems are the cornerstone of modern cryptography.
• These are problems for which even the best algorithms wouldn’t find a solution
before the sun burns out.

• They provide the security foundation for cryptographic schemes.
• Without hard problems, most of our encryption systems would collapse.

Applied Cryptography - American University of Beirut 13/81

The rise of computational complexity theory

Computational Complexity Theory

Complexity theory provides the mathematical framework to understand what makes prob-
lems “hard”.

• In the 1970s, rigorous study of hard problems led to computational complexity
theory.

• This field has had dramatic impacts beyond cryptography:
• Economics: Computational complexity of finding Nash equilibria in game theory.
• Physics: Simulating quantummany-body systems with exponential complexity.
• Biology: Protein folding prediction and DNA sequence alignment algorithms.

Applied Cryptography - American University of Beirut 14/81

Computational problems

Computational Problem

A question that can be answered by performing a computation.
• Decision problems: Questions with “yes” or “no” answers

• Example: “Is 217 a prime number?”
• Search problems: Questions that require finding a specific value

• Example: “Howmany instances of ‘i’s appear in ‘incomprehensibilities’?”

• Computational problems form the foundation of theoretical computer science.
• Different types of problems require different algorithmic approaches.
• The difficulty of solving these problems is central to cryptography.

Applied Cryptography - American University of Beirut 15/81

Computational hardness

Computational Hardness

The property of computational problems for which no algorithm exists that can solve the
problem in a reasonable amount of time.

• Also called intractable problems.
• Hardness is independent of the computing device used.
• All standard computing models are equivalent in terms of what they can compute
efficiently.

• Exception: Quantum computers for certain problems.

• Hardness is a fundamental concept in computational complexity theory.
• Cryptography deliberately uses hard problems to create security.
• What’s “hard” should remain hard regardless of hardware advances.

Applied Cryptography - American University of Beirut 16/81

Measuring algorithm complexity

• To evaluate computational
hardness, we need to
measure an algorithm’s
running time.

• We typically use asymptotic
analysis to express
complexity.

• Common notation:
• 𝑂(𝑛): Linear time.
• 𝑂(𝑛2): Quadratic time.
• 𝑂(2𝑛): Exponential time.

Complexity classes growth. Source: Serious Cryptography

Applied Cryptography - American University of Beirut 17/81

Measuring algorithm complexity

• To evaluate computational hardness, we need to measure an algorithm’s
running time.

• We typically use asymptotic analysis to express complexity.
• Common notation:

• 𝑂(𝑛): Linear time.
• 𝑂(𝑛2): Quadratic time.
• 𝑂(2𝑛): Exponential time.

• We care about how the running time grows as the input size increases.
• Example: An algorithm that takes 𝑛2 operations for input size 𝑛 becomes
impractical as 𝑛 grows large.

Applied Cryptography - American University of Beirut 18/81

Categorizing computational hardness

Easy Problems
• Solvable in polynomial time.
• Examples: Sorting, searching.
• Running time: 𝑂(𝑛𝑐) for some
constant 𝑐

• Generally scales reasonably with
input size.

• Class P (Polynomial time).

Hard Problems
• No known polynomial-time solution.
• Example: Factorizing product of two
large primes.

• Running time: Often exponential, e.g.,
𝑂(2𝑛)

• Becomes impractical quickly as input
grows.

• Includes NP-hard, NP-complete
classes.

Applied Cryptography - American University of Beirut 19/81

Hard problems in practice

• Public-key cryptography relies on specific hard problems:
• RSA: Integer factorization problem.
• Diffie-Hellman: Discrete logarithm problem.

• Cryptography leverages these problems to maximize security assurance,
• The security of these schemes depends on the continued hardness of these
problems.

Applied Cryptography - American University of Beirut 20/81

Quantum vulnerability of hard problems

• The hard problems we rely on today (factoring, discrete logarithm) are
vulnerable to quantum computers.

• Shor’s algorithm (1994) can efficiently solve both problems on a sufficiently
powerful quantum computer.

• This has motivated the search for “post-quantum” hard problems:
• Lattice-based cryptography (e.g., ML-KEM, formerly CRYSTALS-Kyber).
• Hash-based cryptography.
• Code-based cryptography.
• Multivariate cryptography.
• Isogeny-based cryptography.

• NIST is currently standardizing post-quantum cryptographic algorithms to
replace our vulnerable systems.

Applied Cryptography - American University of Beirut 21/81

What is NIST?

• NIST stands for the National Institute of
Standards and Technology.

• It’s a U.S. government agency that develops
technology standards.

• In cryptography, NIST:
• Sets security standards used worldwide.
• Evaluates and approves cryptographic
algorithms.

• Currently leading the standardization of
post-quantum cryptography.

• When NIST standardizes an algorithm, it often
becomes the global industry standard.

NIST’s “Standard Reference Peanut Butter”,
available for only $1,217 USD!

Applied Cryptography - American University of Beirut 22/81

Funny things standardized by NIST

• Standard Reference Peanut Butter: for calibrating food testing equipment.
• The “Odor Unit”: for standardizing measurements of smell intensity in
environmental monitoring.

• The Standard Banana Equivalent Dose (BED): for comparing radiation exposure
levels to the natural radiation in a banana.

• Toilet Paper Testing: for measuring strength, absorbency, and softness of toilet
paper products.

Applied Cryptography - American University of Beirut 23/81

Cryptographic algorithms standardized by NIST

• AES (Advanced Encryption Standard): Selected in 2001 to replace DES, now the
worldwide standard for symmetric encryption.

• SHA-2 and SHA-3 (Secure Hash Algorithms): Cryptographic hash functions used
for digital signatures and data integrity.

• DSA and ECDSA: Digital Signature Algorithms based on the discrete logarithm
problem.

• Triple DES: An interim standard before AES that enhanced the security of the
original DES.

• ML-KEM andML-DSA: Recently standardized post-quantum public-key
cryptography and signature schemes.

Applied Cryptography - American University of Beirut 24/81

Why hard problemsmatter

• Hard problems create asymmetry between legitimate users and attackers.
• Easy in one direction, difficult in the reverse.
• Example: Easy to multiply large primes, hard to factor the product.
• This asymmetry is what enables secure communication!

Applied Cryptography - American University of Beirut 25/81

What are complexity classes?

Complexity Class

A group of computational problems that share similar resource requirements (time,memory,
etc.).

• Example: All problems solvable in 𝑂(𝑛2) time form one class.
• Different classes represent different levels of computational difficulty.
• Understanding these classes helps us categorize cryptographic problems.

Applied Cryptography - American University of Beirut 26/81

TIME complexity classes

• TIME(𝑓(𝑛)) = class of problems solvable in time 𝑂(𝑓(𝑛))
• Examples:

• TIME(𝑛2) = problems solvable in 𝑂(𝑛2) time
• TIME(𝑛3) = problems solvable in 𝑂(𝑛3) time
• TIME(2𝑛) = problems solvable in 𝑂(2𝑛) time

• Key insight: If you can solve a problem in 𝑂(𝑛2) time, you can also solve it in
𝑂(𝑛3) time.

• Therefore: TIME(𝑛2) ⊆ TIME(𝑛3) ⊆ TIME(𝑛4) ⊆ …

Applied Cryptography - American University of Beirut 27/81

The class P (Polynomial time)

Class P

The union of all TIME(𝑛𝑘) classes for all constants 𝑘.
• P = TIME(𝑛)∪ TIME(𝑛2)∪ TIME(𝑛3) ∪ …
• Contains all problems solvable in polynomial time.
• Generally considered “efficiently solvable”.

• Most practical algorithms we use daily are in class P.
• Examples: Sorting, searching, basic arithmetic.
• Cryptography often relies on problems not in P!

Applied Cryptography - American University of Beirut 28/81

SPACE complexity classes

• Time isn’t everything—memory usage matters too!
• A single memory access can be orders of magnitude slower than CPU operations.
• SPACE(𝑓(𝑛)) = class of problems solvable using 𝑂(𝑓(𝑛)) bits of memory
• Examples:

• SPACE(𝑛) = problems using 𝑂(𝑛)memory
• SPACE(𝑛2) = problems using 𝑂(𝑛2)memory

• PSPACE = union of all SPACE(𝑛𝑘) for constants 𝑘

Applied Cryptography - American University of Beirut 29/81

Relationship between TIME and SPACE

• Key insight: Any algorithm running in time 𝑓(𝑛) uses at most 𝑓(𝑛)memory.
• Why? You can write at most one bit per time unit.
• Therefore: TIME(𝑓(𝑛)) ⊆ SPACE(𝑓(𝑛))
• This gives us: 𝑃 ⊆ 𝑃𝑆𝑃𝐴𝐶𝐸
• Important: Lowmemory doesn’t guarantee fast execution!

• Example: Brute-force key search uses little memory but takes forever.

Applied Cryptography - American University of Beirut 30/81

The class NP (Nondeterministic Polynomial time)

Class NP

The class of decision problems for which you can verify a solution in polynomial time, even
if finding the solution is hard.

• Key insight: Easy to check, hard to find!
• Given a potential solution, you can run a polynomial-time algorithm to verify if
it’s correct.

• You don’t need to find the solution efficiently—only verify it efficiently.
• Relationship: 𝑃 ⊆ 𝑁𝑃 (if you can solve it quickly, you can certainly verify it
quickly)

Applied Cryptography - American University of Beirut 31/81

NP: A cryptographic example

Problem: Given plaintext 𝑃 and ciphertext 𝐶, does there exist a key 𝐾 such that
𝐶 = 𝐸(𝐾, 𝑃)?
• Finding the solution: Could take exponential time (brute-force key search)
• Verifying a candidate solution: Given a potential key 𝐾0:

1. Compute 𝐸(𝐾0, 𝑃)
2. Check if 𝐸(𝐾0, 𝑃) = 𝐶
3. Return “yes” if they match, “no” otherwise

• This verification runs in polynomial time!
• Therefore, this key recovery problem is in NP.

Applied Cryptography - American University of Beirut 32/81

What’s NOT in NP?

• Known-ciphertext attacks: You only have 𝐸(𝐾, 𝑃) values for random unknown
plaintexts 𝑃.
• How do you verify if candidate key 𝐾0 is correct?
• You don’t know what the plaintexts should be!
• Can’t express this as a decision problem with efficient verification.

• Proving absence of solutions: “Does there exist NO solution to this problem?”
• To verify “no solution exists,” you might need to check all possible inputs.
• If there are exponentially many inputs, this takes exponential time.
• Therefore, proving non-existence is generally not in NP.

Applied Cryptography - American University of Beirut 33/81

NP-complete problems

NP-Complete Problems

The hardest decision problems in the class NP.
• No known polynomial-time algorithms exist for worst-case instances.
• If any NP-complete problem can be solved efficiently, then all problems in NP can be
solved efficiently.

• Discovered in the 1970s during the development of complexity theory.
• Remarkable discovery: All NP-complete problems are fundamentally equally
hard!

• Examples: Boolean satisfiability (SAT), traveling salesman problem, graph
coloring.

Applied Cryptography - American University of Beirut 34/81

Why are NP-complete problems equally hard?

• Key insight: You can reduce any NP-complete problem to any other
NP-complete problem.

• Reduction: Transform one problem into another in polynomial time.
• If you can solve problem B efficiently, you can solve problem A efficiently too.

• Mathematical equivalence: Different NP-complete problems may look
completely different but are fundamentally the same from a computational
perspective.

• Consequence: Solving any single NP-complete problem efficiently would solve
all problems in NP efficiently!
• This would prove that P = NP (one of the biggest open questions in computer
science).

Applied Cryptography - American University of Beirut 35/81

The remarkable equivalence of NP-complete problems

These problems look completely different...

Boolean Logic
Can you set variables to make
this formula true?
(𝑥1 ∨ ¬𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ …

Travel Planning
What’s the shortest route
visiting all cities exactly once?

Sudoku Puzzles
Can you fill this 9×9 grid
following the rules?

...but they’re computationally identical!

Applied Cryptography - American University of Beirut 36/81

Concrete examples of equivalent problems

• 3-SAT (Boolean satisfiability): Given a logical formula, can you set the variables
to make it true?
• Example: (𝑥1 ∨ ¬𝑥2 ∨ 𝑥3) ∧ (¬𝑥1 ∨ 𝑥2 ∨ ¬𝑥3) ∧ …

• Traveling Salesman Problem: Given cities and distances, what’s the shortest
route visiting each city exactly once?
• Looks like a geometry/optimization problem!

• Graph Coloring: Can you color a graph’s vertices with 𝑘 colors so no adjacent
vertices share a color?

• Looks like a combinatorial puzzle!
• Subset Sum: Given a set of integers, is there a subset that sums to exactly 𝑘?

• Looks like an arithmetic problem!

Applied Cryptography - American University of Beirut 37/81

Themagic of reductions

Problem Reduction

A polynomial-time transformation that converts any instance of problem A into an equiva-
lent instance of problem B.

• You can transform any Sudoku puzzle into a Boolean logic formula!
• The Sudoku has a solution⇔ the formula is satisfiable

• You can transform any traveling salesman instance into a graph coloring
problem!

• You can transform any Boolean formula into a subset sum problem!
• These transformations preserve the “yes/no” answer and run in polynomial time.
• Mind-blowing consequence: Solve Sudoku efficiently = solve all of theoretical
computer science!

Applied Cryptography - American University of Beirut 38/81

Real-world impact of this equivalence

• Good news: Any algorithmic breakthrough on one NP-complete problem
immediately applies to thousands of others!
• Better SAT solvers⇒ better protein folding, circuit design, AI planning...

• Sobering reality: 50+ years of computer science research suggests these
problems are fundamentally hard.
• Despite massive incentives (millions in prize money, practical applications worth
billions)

• Cryptographic relevance: We rely on NP-complete problems being hard for
certain security models.
• Though most practical cryptography uses different hard problems (factoring,
discrete log)

• Universal truth: The computational universe has these deep, hidden
connections that unite seemingly unrelated problems.

Applied Cryptography - American University of Beirut 39/81

Fun fact: Nintendo games are NP-hard!

• Games proven NP-harda:
• Super Mario Bros. 1–3, The Lost Levels, Super Mario World
• Donkey Kong Country 1–3
• All classic Legend of Zelda games
• All classic Metroid games
• All classic Pokémon role-playing games

• The catch: “Generalized versions” with arbitrarily large levels.
• Real Nintendo levels are designed to be solvable by humans.
• But themathematical structure of these games is inherently complex.

• Cool insight: Video games naturally encode complex computational problems!

ahttps://appliedcryptography.page/papers/nintendo-hard.pdf

Applied Cryptography - American University of Beirut 40/81

https://appliedcryptography.page/papers/nintendo-hard.pdf

The P vs. NP Problem

The P vs. NP Problem

One of the most important unsolved problems in computer science and mathematics.
• Question: Does P = NP?
• Translation: Are there problems that are easy to verify but fundamentally hard to
solve?

• If you could solve any NP-complete problem in polynomial time, then you could
solve all NP problems in polynomial time.

• This would mean P = NP.
• Intuition says: Surely some problems are easy to check but hard to find!
• Example: Brute-force key recovery seems inherently exponential-time...
• Reality: No one has proved this mathematically!

Applied Cryptography - American University of Beirut 41/81

Themillion-dollar question

• The Clay Mathematics Institute offers $1,000,000 for solving P vs. NP.
• One of seven “Millennium Prize Problems”.
• Renowned complexity theorist Scott Aaronson called it “one of the deepest
questions that human beings have ever asked”.

• To win: Prove either 𝑃 = 𝑁𝑃 or 𝑃 ≠ 𝑁𝑃.
• Over 50 years of research, no solution yet!

Applied Cryptography - American University of Beirut 42/81

What if P = NP?

The cryptographic apocalypse scenario

• If P = NP, then any easily checked solution would also be easy to find.
• Symmetric cryptography would be completely broken:

• Key recovery becomes polynomial-time.
• AES, ChaCha20, all symmetric ciphers become useless.

• Hash functions would be invertible in polynomial time:
• Finding preimages becomes easy.
• Digital signatures, password storage, all broken.

• All of modern cryptography would collapse overnight!
• But also: We could solve protein folding, optimize supply chains perfectly, solve
climate modeling...

Applied Cryptography - American University of Beirut 43/81

Whywe don’t panic

• Overwhelming consensus: Most complexity theorists believe 𝑃 ≠ 𝑁𝑃.
• Intuitive reasoning: Problems that look hard actually are hard.
• The structure of reality: Easy-to-verify but hard-to-solve problems seem
fundamental to the universe.

• 50+ years of evidence: Despite massive incentives, no polynomial-time
algorithms found for NP-complete problems.

• Current belief: P is a strict subset of NP, with NP-complete problems outside P.

The Challenge

• Proving 𝑃 = 𝑁𝑃: Need only one polynomial-time algorithm for one NP-complete
problem

• Proving 𝑃 ≠ 𝑁𝑃: Must prove no such algorithm can ever exist—much harder!

Applied Cryptography - American University of Beirut 44/81

WhyNP-complete problems don’t work for cryptography

• Tempting idea: Base cryptography on NP-complete problems for provable
security!

• The dream: Prove that breaking some cipher is NP-hard.
• Security would be guaranteed as long as 𝑃 ≠ 𝑁𝑃.

• Reality is disappointing: NP-complete problems are hard in theworst case, not
the average case
• The structure that makes them hard can make specific instances easy.
• Cryptography needs problems that are hard for random instances.

• What we actually use: Problems that are probably not NP-hard.
• Factoring, discrete logarithm, lattice problems.
• Believed hard on average, but not proven NP-complete.

Applied Cryptography - American University of Beirut 45/81

NP-complete vs. NP-hard

NP-Complete Problems
• Must be decision problems (yes/no
answers)

• You can verify solutions in polynomial
time

• Examples: 3-SAT, graph coloring,
subset sum

• The “sweet spot” of hardness

NP-Hard Problems
• Can be any type of problem
(optimization, etc.)

• May not have polynomial-time
verification

• Examples: Traveling salesman
optimization, halting problem

• Can be even harder than
NP-complete!

Applied Cryptography - American University of Beirut 46/81

Average-case vs. worst-case hardness

Worst-case hardness (NP-complete)
• Some instances of the problem are
very hard.

• Other instances might be easy.
• Example: 3-SAT has hard instances,
but also trivial ones.

• Not suitable for cryptography.

Average-case hardness (Crypto)
• Random instances are typically hard.
• Few (if any) easy instances.
• Example: Factoring random large
integers.

• Perfect for cryptographic
applications.

Hard Problems for Cryptography

We need problems where almost every instance is hard, not just the worst ones.

Applied Cryptography - American University of Beirut 47/81

Section 2

Diffie-Hellman

Time for actual magic

Applied Cryptography - American University of Beirut 49/81

The key exchange problem

• Alice and Bob want to communicate securely over the internet.
• They’ve never met before and share no secrets.
• How can they establish a shared secret key for encryption?
• Traditional approach: meet in person, exchange keys physically.
• Problem: This doesn’t scale for the internet!

The Challenge

Create a shared secret between twopartieswhohavenever communicatedbefore, evenwhen
an eavesdropper can see everything they send to each other.

Applied Cryptography - American University of Beirut 50/81

Themagic of Diffie-Hellman

• Whitfield Diffie and Martin Hellman solved this “impossible” problem.
• Their solution came one year before RSA (1977).
• Uses the discrete logarithm problem as its foundation.
• Allows two strangers to create a shared secret in public!

This was the birth of modern cryptography

Applied Cryptography - American University of Beirut 51/81

Whatmakes discrete logarithm hard?

• Remember: we need problems that are easy in one direction, hard in reverse.
• Easy direction: Given 𝑔 and 𝑥, compute 𝑔𝑥 mod 𝑝

• Example: 210 mod 17 = 1024 mod 17 = 4
• Hard direction: Given 𝑔, 𝑝, and 𝑔𝑥 mod 𝑝, find 𝑥

• Example: Given 𝑔 = 2, 𝑝 = 17, and result = 4, find 𝑥 = 10
• For small numbers, this is easy. For huge numbers (thousands of bits), it’s
computationally infeasible!

Applied Cryptography - American University of Beirut 52/81

A simple example

Let’s work with small numbers to see the pattern:

• Let 𝑝 = 17 (a prime) and 𝑔 = 2 (a generator)
• Computing powers is easy:

• 21 mod 17 = 2
• 22 mod 17 = 4
• 23 mod 17 = 8
• 24 mod 17 = 16
• 25 mod 17 = 15

• Finding the exponent is harder:
• Given result 15, can you quickly find that the exponent was 5?
• With small numbers: yes, by trying all possibilities
• With 2048-bit numbers: practically impossible!

Applied Cryptography - American University of Beirut 53/81

Mathematical groups: the foundation

What is a Mathematical Group?

A set of elements with an operation that follows specific rules.
• Think of it as amathematical playground with consistent rules.
• For cryptography, we use ℤ∗𝑝: numbers {1, 2, 3,… , 𝑝 − 1} with multiplication mod 𝑝.

• Example: ℤ∗5 = {1, 2, 3, 4} with multiplication mod 5
• 3 × 4 = 12 mod 5 = 2
• 2 × 3 = 6 mod 5 = 1

• The “rules” ensure the math works consistently for cryptography.

Applied Cryptography - American University of Beirut 54/81

Group rules (simplified)

For our cryptographic group ℤ∗𝑝 , these rules always hold:
• Closure: Multiplying any two elements gives another element in the group

• In ℤ∗5 : 2 × 3 = 1 (still in the group!)
• Identity: There’s a special element (1) that doesn’t change others

• 1 × 4 = 4, 1 × 2 = 2, etc.
• Inverses: Every element has a “partner” that multiplies to 1

• In ℤ∗5 : 2 × 3 = 1, so 2 and 3 are inverses
• Associativity: (𝑎 × 𝑏) × 𝑐 = 𝑎 × (𝑏 × 𝑐)

Why care? These rules guarantee that our cryptographic operations will behave
predictably!

Applied Cryptography - American University of Beirut 55/81

Generators: the special elements

Generator

An element 𝑔 whose powers 𝑔1, 𝑔2, 𝑔3,… produce every element in the group.

• In ℤ∗5 , let’s try 𝑔 = 2:
• 21 mod 5 = 2
• 22 mod 5 = 4
• 23 mod 5 = 3
• 24 mod 5 = 1

• We got {2, 4, 3, 1} - that’s all elements! So 𝑔 = 2 is a generator.
• Generators are crucial: They let us express every group element as a power of 𝑔.

Applied Cryptography - American University of Beirut 56/81

The discrete logarithm problem (DLP)

Discrete Logarithm Problem

Given 𝑔, 𝑝, and ℎ = 𝑔𝑥 mod 𝑝, find the secret exponent 𝑥.

• “Discrete” because we work with integers, not real numbers
• “Logarithm” because we’re finding the exponent (like log2(8) = 3)
• Example: Given 𝑔 = 2, 𝑝 = 17, ℎ = 8, find 𝑥 such that 2𝑥 ≡ 8 (mod 17)

• Answer: 𝑥 = 3 (since 23 = 8)
• Easy with small numbers, hard with large ones!

• For cryptographic-sized numbers (2048+ bits), no efficient algorithm is known.

Applied Cryptography - American University of Beirut 57/81

DLP vs. factoring: equally hard

Factoring Problem
• Given 𝑁 = 𝑝 × 𝑞, find 𝑝 and 𝑞
• Used in RSA (1977)
• Well-known, intuitive

Discrete Logarithm
• Given 𝑔𝑥 mod 𝑝, find 𝑥
• Used in Diffie-Hellman (1976)
• Less intuitive, more mathematical

• Security equivalence: 𝑛-bit factoring ≈ 𝑛-bit discrete logarithm
• Both are vulnerable to Shor’s quantum algorithm
• Both are not known to be NP-hard
• Algorithms for both problems share similar techniques

Applied Cryptography - American University of Beirut 58/81

Diffie-Hellman: themathematical version

Setup: Alice and Bob agree on public values 𝑔 (generator) and 𝑝 (large prime)

1. Alice: Chooses secret 𝑎, computes 𝐴 = 𝑔𝑎 mod 𝑝, sends 𝐴 to Bob

2. Bob: Chooses secret 𝑏, computes 𝐵 = 𝑔𝑏 mod 𝑝, sends 𝐵 to Alice

3. Alice: Computes shared secret 𝑆 = 𝐵𝑎 mod 𝑝 = (𝑔𝑏)𝑎 mod 𝑝 = 𝑔𝑎𝑏 mod 𝑝
4. Bob: Computes shared secret 𝑆 = 𝐴𝑏 mod 𝑝 = (𝑔𝑎)𝑏 mod 𝑝 = 𝑔𝑎𝑏 mod 𝑝

Result: Alice and Bob both have 𝑆 = 𝑔𝑎𝑏 mod 𝑝 without ever sharing 𝑎 or 𝑏!

Applied Cryptography - American University of Beirut 59/81

Diffie-Hellman example with small numbers

Public parameters: 𝑔 = 2, 𝑝 = 17

1. Alice: Picks secret 𝑎 = 6
• Computes 𝐴 = 26 mod 17 = 64 mod 17 = 13
• Sends 𝐴 = 13 to Bob

2. Bob: Picks secret 𝑏 = 10
• Computes 𝐵 = 210 mod 17 = 1024 mod 17 = 4
• Sends 𝐵 = 4 to Alice

3. Both compute shared secret:
• Alice: 𝑆 = 46 mod 17 = 4096 mod 17 = 9
• Bob: 𝑆 = 1310 mod 17 = … = 9

Shared secret: 𝑆 = 9 (which equals 26×10 mod 17)

Applied Cryptography - American University of Beirut 60/81

The computational Diffie-Hellman (CDH) problem

Computational Diffie-Hellman (CDH) Problem

Given 𝑔𝑎 mod 𝑝 and 𝑔𝑏 mod 𝑝, compute the shared secret 𝑔𝑎𝑏 mod 𝑝 without knowing the
secret values 𝑎 and 𝑏.

• Motivation: Even if an eavesdropper captures the public values 𝑔𝑎 and 𝑔𝑏, they
shouldn’t be able to determine the shared secret 𝑔𝑎𝑏.

• Example: Given 𝐴 = 13 and 𝐵 = 4 from our earlier example, can you compute
𝑆 = 9?
• Without knowing 𝑎 = 6 and 𝑏 = 10, this becomes very difficult!

• Real-world relevance: This is exactly what an attacker faces when trying to
break Diffie-Hellman.

Applied Cryptography - American University of Beirut 61/81

CDH vs. DLP: the relationship

• Key insight: If you can solve DLP, then you can also solve CDH.
• Given 𝑔𝑎 and 𝑔𝑏, use DLP to find 𝑎 and 𝑏
• Then compute 𝑔𝑎𝑏 directly

• Mathematical relationship: DLP is at least as hard as CDH.
• CDH ≤ DLP (CDH reduces to DLP)

• Open question: Is CDH at least as hard as DLP?
• We don’t know if solving CDH allows you to solve DLP!
• Maybe there’s a clever way to compute 𝑔𝑎𝑏 without finding 𝑎 and 𝑏

• Security assumption: We assume CDH is hard even if it’s easier than DLP.

Applied Cryptography - American University of Beirut 62/81

The decisional Diffie-Hellman (DDH) problem

Decisional Diffie-Hellman (DDH) Problem

Given 𝑔𝑎 mod 𝑝, 𝑔𝑏 mod 𝑝, and a value 𝑋 that is either:
• 𝑔𝑎𝑏 mod 𝑝 (the real shared secret), or
• 𝑔𝑐 mod 𝑝 for some random 𝑐

...determine which one 𝑋 is (each choice has probability 1/2).

• Why do we need this? Indistinguishability!
• What if an attacker can compute the first 32 bits of 𝑔𝑎𝑏?
• CDH isn’t completely broken, but the attacker learned something.
• This partial information might compromise application security.

• DDH ensures: The shared secret 𝑔𝑎𝑏 is indistinguishable from a random group
element.

Applied Cryptography - American University of Beirut 63/81

DDH vs. CDH: the hierarchy

• Key relationship: If you can solve CDH, then you can solve DDH.
• Given (𝑔𝑎, 𝑔𝑏, 𝑋), use CDH to compute 𝑔𝑎𝑏
• Check if 𝑋 = 𝑔𝑎𝑏; if yes, then 𝑋 is the real shared secret

• Hardness hierarchy: DDH ≤ CDH ≤ DLP
• DDH is fundamentally easier than CDH.
• CDH is (probably) easier than DLP.

• Surprising fact: DDH is not hard in certain groups!
• In ℤ∗𝑝 , DDH can be broken using pairing-based techniques.
• But CDH remains hard in the same group.

• Solution: Use elliptic curve groups where DDH is believed hard.

Applied Cryptography - American University of Beirut 64/81

Why DDHmatters in cryptography

• Indistinguishability: DDH ensures that shared secrets “look random”.
• Critical for encryption schemes and key derivation.
• Prevents attackers from learning partial information.

• Security proofs: Many cryptographic protocols prove security under DDH.
• ElGamal encryption.
• Cramer-Shoup cryptosystem.
• Various authenticated key exchange protocols.

• Real-world impact: Even though DDH is “weaker” than CDH, it’s one of the most
studied and used assumptions.
• Provides stronger security guarantees for applications.
• Enables more sophisticated cryptographic constructions.

Applied Cryptography - American University of Beirut 65/81

Real-world Diffie-Hellman

• TLS/HTTPS: Your browser uses Diffie-Hellman to establish secure connections.
• Signal: Uses elliptic-curve Diffie-Hellman for key exchange.
• SSH: Secure shell connections use Diffie-Hellman for key agreement.
• VPNs: Many VPN protocols rely on Diffie-Hellman for establishing tunnels.

Modern Diffie-Hellman Variants

• Elliptic Curve Diffie-Hellman (ECDH): Same idea, different mathematical group.
• Post-quantum alternatives: New key exchange methods for the quantum era.

More on both of the above in future course topics!

Applied Cryptography - American University of Beirut 66/81

Diffie-Hellman key exchange in practice

How does this actually work in the real world?

1. Parameter generation: Choose secure values for 𝑝 and 𝑔
• 𝑝must be a large prime (2048+ bits)
• 𝑔must be a generator of a large subgroup

2. Key generation: Each party picks a random secret
• Alice picks 𝑎 randomly from {1, 2,… , 𝑝 − 2}
• Bob picks 𝑏 randomly from {1, 2,… , 𝑝 − 2}

3. Public key computation: Each party computes their public value

4. Key exchange: Public values are sent over the network

5. Shared secret derivation: Each party computes the final shared secret
Applied Cryptography - American University of Beirut 67/81

TLS handshake: Diffie-Hellman in action

When you visit https://gmail.com, here’s what happens:

1. Client Hello: Your browser says “I want to talk securely”
2. Server Hello: Gmail’s server responds with its certificate and DH parameters

• Includes 𝑝, 𝑔, and server’s public value 𝑔𝑏 mod 𝑝
3. Client Key Exchange: Your browser generates its own secret 𝑎 and sends
𝑔𝑎 mod 𝑝

4. Secret computation: Both sides compute 𝑔𝑎𝑏 mod 𝑝
5. Key derivation: The shared secret is used to derive encryption keys

6. Secure communication: All further messages are encrypted with these keys

Result: Your password is encrypted before leaving your computer!
Applied Cryptography - American University of Beirut 68/81

Signal’s double ratchet: DH everywhere

• Initial key exchange: Uses X3DH (Extended Triple DH)
• Combines three DH key exchanges for security.
• Works even when recipient is offline (“asynchronous”
protocol).a

• Ongoing communication: Uses Double Ratchet
• New DH key exchange for every message!
• Provides “forward secrecy” and “post-compromise
security”.

• If your phone gets compromised today, yesterday’s
messages remain secure.

• If your phone recovers from compromise, tomorrow’s
messages are secure again.

aEverything on this slide will be covered in much more detail later in the course.

Signal uses DH key exchange
dozens, hundreds of times per

conversation.

Applied Cryptography - American University of Beirut 69/81

The dark side: unauthenticated Diffie-Hellman

But there’s a serious problem...

• The vulnerability: Basic DH has no authentication
• Alice can’t verify she’s talking to Bob
• Bob can’t verify he’s talking to Alice

• The attack: Man-in-the-middle (MITM)
• Mallory sits between Alice and Bob
• Alice does DH with Mallory, thinking it’s Bob
• Bob does DH with Mallory, thinking it’s Alice
• Mallory can read and modify everything!

• Real-world impact: This attack is practical and devastating!

Applied Cryptography - American University of Beirut 70/81

Man-in-the-middle attack on DH

HowMallory breaks “secure” communication:

1. Alice→Mallory: Alice sends 𝑔𝑎 (thinking it goes to Bob)
2. Mallory→ Bob: Mallory sends 𝑔𝑚 (Bob thinks it’s from Alice)
3. Bob→Mallory: Bob sends 𝑔𝑏 (thinking it goes to Alice)
4. Mallory→ Alice: Mallory sends 𝑔𝑚 (Alice thinks it’s from Bob)
5. Result:

• Alice and Mallory share secret 𝑔𝑎𝑚
• Bob and Mallory share secret 𝑔𝑏𝑚
• Alice and Bob don’t share any secret!

6. Communication: Alice encrypts with 𝑔𝑎𝑚, Mallory decrypts, reads/modifies,
re-encrypts with 𝑔𝑏𝑚 for Bob

Alice and Bob never know they’ve been compromised!
Applied Cryptography - American University of Beirut 71/81

WhyMITM attacks succeed

• Public values look random: 𝑔𝑎 and 𝑔𝑚 are indistinguishable.
• Both appear to be random group elements.
• No way to tell if they come from the intended party.

• No identity verification: DH only establishes a shared secret.
• Doesn’t prove who you’re sharing it with!
• Like agreeing on a secret handshake with someone wearing a mask.

• Active vs. passive attacks:
• DH protects against passive eavesdropping.
• Does nothing against activemanipulation.

• Historical impact: This attack has compromised real systems for decades.

Applied Cryptography - American University of Beirut 72/81

Solution: Authenticated Key Exchange

Authenticated Key Exchange (AKE)

Key exchange that verifies the identity of theparties involved, preventingman-in-the-middle
attacks.

• Core idea: Combine DH with authentication mechanisms
• Common approaches:

• Digital signatures: Sign the DH public values (TLS).
• Pre-shared keys: Use existing shared secrets (IPsec).
• Certificates: Use a trusted third party (Certificate Authority in HTTPS).
• Password-based: Derive authentication from passwords (SRP protocols).

• Goal: Ensure that Alice and Bob can verify they’re really talking to each other.

Applied Cryptography - American University of Beirut 73/81

TLS: authenticated DHwith certificates

HowHTTPS prevents MITM attacks:
1. Server authentication: Gmail sends its certificate along with 𝑔𝑏

• Certificate proves “this DH value really came from gmail.com”
• Signed by a trusted Certificate Authority (CA)

2. Certificate verification: Your browser checks:
• Is the signature valid?
• Is the CA trusted?
• Does the certificate match “gmail.com”?
• Has the certificate expired?

3. If verification passes: You know you’re really talking to Gmail

4. If verification fails: Browser shows scary warnings!

Result: MITM attacks becomemuch harder (but not impossible!)

Applied Cryptography - American University of Beirut 74/81

Signal: authenticated DHwith fingerprints

• The bootstrapping problem: How do Alice and Bob
initially authenticate?
• No pre-existing certificates.
• No trusted third parties.

• Signal’s solution: Security numbers (fingerprints)
• Each conversation gets a unique 60-digit number.
• Derived from both parties’ long-term identity keys.

• Manual verification: Users compare numbers
out-of-band.
• Read over the phone…
• Show in person…
• Send via different app… Signal security number

verification screen.

Applied Cryptography - American University of Beirut 75/81

SSH: authenticated DHwith host keys

How SSH prevents server impersonation:
• First connection: Server presents its “host key” along with DH public value

• SSH shows you a fingerprint: SHA256:ABC123^^.
• You’re supposed to verify this out-of-band (but nobody does!)

• Trust on first use (TOFU): Client remembers the host key
• Stored in ~/.ssh/known_hosts

• Subsequent connections: Client checks if host key matches
• If different, gives you a heart attack: WARNING: REMOTE HOST IDENTIFICATION
HAS CHANGED!

• If same: Connection proceeds normally

• User authentication: Usually with passwords or public keys

Weakness: TOFU is vulnerable on the very first connection!

Applied Cryptography - American University of Beirut 76/81

Modern implementations: elliptic curves

Traditional DH
• Uses ℤ∗𝑝 (integers mod 𝑝)
• Requires 2048+ bit numbers
• Slower computations
• Larger public keys

Elliptic Curve DH (ECDH)
• Uses elliptic curve groups
• 256-bit keys ≈ 2048-bit traditional
DH

• Much faster computations
• Smaller public keys, less bandwidth

• Popular curves: P-256, P-384, X25519, X448
• Same security: Based on elliptic curve discrete logarithm problem
• Real-world adoption: ECDH is now standard in TLS, Signal, etc.
• Performancematters: Especially important for mobile devices and IoT

Applied Cryptography - American University of Beirut 77/81

The quantum threat to Diffie-Hellman

All DH variants are doomed...

• Shor’s algorithm (1994) can break DH on quantum computers.
• Solves discrete logarithm in polynomial time.
• Works for both traditional DH and ECDH.

• Timeline concerns:
• Large quantum computers don’t exist yet.
• But adversaries might store encrypted data now, decrypt later.
• “Harvest now, decrypt later” attacks.

• Post-quantum key exchange: New algorithms under development.
• ML-KEM (based on lattice problems)
• SIDH/SIKE (based on isogenies, but recently broken!)
• Code-based and hash-based alternatives

Applied Cryptography - American University of Beirut 78/81

Lessons from 50 years of Diffie-Hellman

• Elegantmathematics: Simple idea with profound implications.
• Two numbers raised to secret powers in a mathematical group.

• Security requiresmore thanmath: Authentication is crucial.
• Pure DH is vulnerable to active attacks.
• Real systems need identity verification.

• Efficiency drives adoption: Elliptic curves made DH practical everywhere.
• Performance improvements enable new applications.

• Future challenges: Quantum computers will force reinvention.
• But the core insight—shared secrets from public exchanges—will survive.

• Cryptography is a living field: Continuous evolution and adaptation.

Applied Cryptography - American University of Beirut 79/81

From hard problems to real-world security

The journey we’ve traced

1. Mathematical insight: Discrete logarithm is hard to compute.

2. Cryptographic innovation: Diffie-Hellman key exchange leverages this hardness.

3. Real-world impact: Secure communication for billions of people daily.

This is the power of applied cryptography: transforming abstract mathematical
problems into tools that help people and protect our digital lives.

Applied Cryptography - American University of Beirut 80/81

Applied Cryptography
CMPS 297AD/396AI
Fall 2025
Part 1: Provable Security

1.7: Hard Problems &
Diffie-Hellman

Nadim Kobeissi
https://appliedcryptography.page

https://appliedcryptography.page

	Hard Problems
	Diffie-Hellman

