
Applied Cryptography
CMPS 297AD/396AI
Fall 2025
Part 1: Provable Security

1.5: Chosen-Plaintext &
Chosen-Ciphertext Attacks

Nadim Kobeissi
https://appliedcryptography.page

https://appliedcryptography.page

Section 1

Chosen-Plaintext Attacks

CPA Security

Security Against Chosen-Plaintext Attacks
(CPA Security)

Let Σ be an encryption scheme, and let Σ.𝒞(ℓ)
denote the set of possible ciphertexts for plaintexts
of length ℓ. If Σ supports only plaintexts of a single
length, we can simply write Σ.𝒞 to denote the entire
set of ciphertexts.a

Σhas security against chosen-plaintextattacks if the
following two libraries are indistinguishable:

a i.e. “just forget about the length”.

ℒΣ
cpa-real

𝐾 ↞ Σ.𝒦
cpa.enc(𝑀):
𝐶 ≔ Σ.Enc(𝐾,𝑀)
return 𝐶

≊

ℒΣ
cpa-rand

cpa.enc(𝑀):
𝐶 ↞ Σ.𝒞(|𝑀|)
return 𝐶

Applied Cryptography - American University of Beirut 3/83

Why CPA security matters

• CPA security means: “even if I let you encrypt any message you want, you can’t
obtain any distinguisher regarding my scheme.”

• Why this matters in real life:
• Attackers often can trick systems into encrypting data they choose.
• Without CPA security, seeing these encryptions could reveal your secrets.
• Example: If bank transactions always encrypt to the same ciphertexts, attackers
could identify your purchases.

• The only thing that’s allowed to leak is the length of messages/ciphertext.
• Most modern encryption is designed to have this important property.

Applied Cryptography - American University of Beirut 4/83

Message length: not important, not unimportant

• Even with CPA security, the length of messages is still leaked.
• This seemingly minor leak can reveal surprising information:

• Encrypted VoIP calls: Length patterns can reveal which language is spoken.
• Encrypted web traffic: Sizes of requests/responses identify websites.
• Encryptedmessages: Length patterns can reveal the type of content (document,
image, etc.)

• Encrypted commands: Length often reveals which command was issued.

• Mitigation typically involves padding messages to fixed lengths or standard
increments.

• This is whymany secure protocols use fixed-size packets or add random padding.

Applied Cryptography - American University of Beirut 5/83

CPA security is why we avoid deterministic encryption

• Deterministic encryption will always
fail CPA security!

• If the samemessage always encrypts
to the same ciphertext:
• Attacker can recognize repeat
messages.

• Can build a “dictionary” of known
plaintexts.

• etc.

• ECB mode is a classic example of
insecure deterministic encryption.

𝒜

𝑀 ↞ℳ
𝐶1 ≔ cpa.enc(𝑀)
𝐶2 ≔ cpa.enc(𝑀)
return 𝐶1 == 𝐶2

Applied Cryptography - American University of Beirut 6/83

Non-deterministic encryption isn’t hard...

• AES-CTR turns AES into a
non-deterministic PRF...

• AES-GCM even turns it into a
non-deterministic authenticated
cipher...a

• We can just as easily make a PRF
non-deterministic:

aMore on these later. An authenticated cipher is one where the ciphertext
can’t be modified by the adversary without that being detected.

enc(𝐾,𝑀):
𝑅 ↞ {0, 1}𝜆
𝑆 ≔ 𝐹(𝐾, 𝑅) ⊕𝑀
return 𝑅‖𝑆

Applied Cryptography - American University of Beirut 7/83

...but it can be fragile

• We switch M and R’s places in
ℒcpa-real’s encryption function.

• Is the scheme still secure?
• No!

ℒcpa-real

𝐾 ↞ {0, 1}𝜆

cpa.enc(𝑀):
𝑅 ↞ {0, 1}𝜆
𝑆 ≔ 𝐹(𝐾,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) ⊕ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
return 𝑅‖𝑆

?
≊

ℒcpa-rand

cpa.enc(𝑀):
𝑅‖𝑆 ↞ {0, 1}2𝜆
return 𝑅‖𝑆

Applied Cryptography - American University of Beirut 8/83

The Golden Rule of PRFs

The Golden Rule of PRFs

If a PRF 𝐹 is being used as a component in a larger construction𝐻, then security usually rests
on how well𝐻 can ensure distinct inputs to 𝐹 .

• When analyzing PRF security, focus on input uniqueness.
• Repeated inputs to a PRF create exploitable patterns.
• Even if 𝐹 is secure,𝐻 can be broken if it causes 𝐹 to receive duplicate inputs.
• Don’t try to directly distinguish 𝐹 ’s outputs from uniform.
• Instead, exploit how𝐻 uses 𝐹 incorrectly.
• Find input patterns that force collisions within 𝐹 .

Applied Cryptography - American University of Beirut 9/83

...but it can be fragile

• 𝐹(𝐾,𝑀) is now constant.
• Pr[𝒜 ⋄ ℒcpa-real ⇒ true] = 1

𝒜

𝑀 ↞ℳ
𝑅1‖𝑆1 ≔ cpa.enc(𝑀)
𝑅2‖𝑆2 ≔ cpa.enc(𝑀)
return 𝑆1 ⊕ 𝑆2 == 𝑅1 ⊕𝑅2

⋄

ℒcpa-real

𝐾 ↞ {0, 1}𝜆

cpa.enc(𝑀):
𝑅 ↞ {0, 1}𝜆
𝑆 ≔ 𝐹(𝐾,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) ⊕ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
return 𝑅‖𝑆

Applied Cryptography - American University of Beirut 10/83

AES is a block cipher
Reminder

• AES takes a 16-byte input, produces a 16-byte output.
• Key can be 16, 24 or 32 bytes.
• OK, so what if we want to encrypt more than 16 bytes?
• Proposal: split the plaintext into 16 byte chunks, encrypt each of them with the
same key.

Applied Cryptography - American University of Beirut 11/83

Block cipher examples

What we start with What we get What we actually want

Applied Cryptography - American University of Beirut 12/83

AES by itself is deterministic

• AES as a block cipher is inherently deterministic:
• AES(𝐾,𝑀) = 𝐶 will always produce the same 𝐶.
• This makes raw AES fail CPA security.

• What makes AES secure in practice?
• Block ciphermodes (CBC, CTR, GCM) add
randomness/state using “initialization vectors”

• IV is fancy name for “random bytes used once”.a

• IVs ensure the same plaintext encrypts differently
each time.

• Without a proper mode, AES is like ECB mode:
predictable patterns

aAlso referred to as “nonces” for “number used once”, although in some block cipher modes such as
AES-CBC, they can technically be used multiple times without problems.

𝒜AES

𝐾 ↞ {0, 1}𝜆
𝑀 ↞ℳ

𝐶1 ≔ AES(𝐾,𝑀)
𝐶2 ≔ AES(𝐾,𝑀)

𝐶1 == 𝐶2

Applied Cryptography - American University of Beirut 13/83

Block ciphermodes of operation

Source: Wikipedia
Applied Cryptography - American University of Beirut 14/83

CBCmode: a closer look

• CBC (Cipher Block Chaining) uses previous
ciphertext to randomize current block.

• Requires a random initialization vector (IV).
• Each block’s encryption depends on all
previous blocks.

• Changes to one block affect all subsequent
ciphertext blocks.

• Sequential encryption (can’t parallelize).

Enc(𝐾,𝑀1‖⋯‖𝑀ℓ):
𝐶0 ↞ {0, 1}𝜆
for 𝑖 = 1 to ℓ ∶
𝐶𝑖 ≔ 𝐹(𝐾, 𝐶𝑖−1 ⊕𝑀𝑖)

return 𝐶0‖𝐶1‖⋯‖𝐶ℓ

Applied Cryptography - American University of Beirut 15/83

CBCmode: a closer look
𝑀1 𝑀2 𝑀3

$ 𝐹 𝐹 𝐹

𝐶0 𝐶1 𝐶2 𝐶3

𝐹−1 𝐹−1 𝐹−1

𝑀1 𝑀2 𝑀3

Enc:

Dec:

Source: The Joy of Cryptography

Applied Cryptography - American University of Beirut 16/83

CTRmode: a closer look

• CTR (Counter) mode turns a block cipher into
a stream cipher.

• Uses a nonce (𝐶0) plus a counter to create
unique inputs to 𝐹 .

• Each block’s encryption is independent of
other blocks.

• Highly parallelizable (unlike CBC).
• The nonce must never be reused with the
same key.

• Widely used in modern protocols (TLS, SSH,
etc.)

Enc(𝐾,𝑀1‖⋯‖𝑀ℓ):
𝐶0 ↞ {0, 1}𝜆
for 𝑖 = 1 to ℓ ∶
𝐶𝑖 ≔ 𝐹(𝐾, 𝐶0 + 𝑖 − 1) ⊕𝑀𝑖

return 𝐶0‖𝐶1‖⋯‖𝐶ℓ

Applied Cryptography - American University of Beirut 17/83

CTRmode: a closer look

𝑀1 𝑀2 𝑀3

$ +1 +1 +1

𝐹 𝐹 𝐹

𝐶0 𝐶1 𝐶2 𝐶3

+1 +1 +1

𝐹 𝐹 𝐹

𝑀1 𝑀2 𝑀3

Enc:

Dec:

Source: The Joy of Cryptography

Applied Cryptography - American University of Beirut 18/83

Section 2

Chosen-Ciphertext Attacks

Introducing chosen-ciphertext attacks

• Imagine this scenario at your company:
• You discover a bug: software crashes when decrypting ciphertexts that yield
plaintexts with null characters.

• You think: “We never encrypt messages with null bytes, so no problem!”
• An attacker can:

• Send specially crafted ciphertexts to your system
• Observe which ones crash your software (contain null bytes) and which don’t
• Use this information to completely break your encryption scheme!

Applied Cryptography - American University of Beirut 20/83

Introducing chosen-ciphertext attacks

• This is a chosen-ciphertext attack (CCA):
• Attacker can submit arbitrary ciphertexts for decryption.
• System leaks information about the decryption results (the crash).
• Even small information leaks can completely compromise security.
• All encryption schemes we’ve seen so far are vulnerable to this!

Applied Cryptography - American University of Beirut 21/83

Format-oracle attacks &malleability

• Scenario: victim using CTR mode decryption
reveals if result contains a null character.

• Information can leak through crashes, error
messages, or behavior differences.

• A single yes/no bit of information can be
enough to break encryption!

• Malleability: many encryption schemes allow
attackers to make predictable changes to
plaintexts by modifying ciphertexts.

• CTR mode is especially vulnerable because
XOR allows targeted bit-flipping.

nulloracle(𝐶):
𝑀 ≔ CTR.Dec(𝐾, 𝐶)
if𝑀 contains 00 character:

return true
else return false

Applied Cryptography - American University of Beirut 22/83

Why is it called nulloracle(𝑐)?

• In mythology and colloquial language:

• An oracle was a mystic who
answered questions on behalf of
the gods.

• Often gave enigmatic answers
requiring interpretation.

The Oracle by Camillo Miola, 1880a

aAbsolutely beautiful painting, well-worth viewing in high
resolution: https://upload.wikimedia.org/wikipedia/
commons/9/94/Camillo_Miola_%28Biacca%29_-_The_
Oracle_-_72.PA.32_-_J._Paul_Getty_Museum.jpgApplied Cryptography - American University of Beirut 23/83

https://upload.wikimedia.org/wikipedia/commons/9/94/Camillo_Miola_%28Biacca%29_-_The_Oracle_-_72.PA.32_-_J._Paul_Getty_Museum.jpg
https://upload.wikimedia.org/wikipedia/commons/9/94/Camillo_Miola_%28Biacca%29_-_The_Oracle_-_72.PA.32_-_J._Paul_Getty_Museum.jpg
https://upload.wikimedia.org/wikipedia/commons/9/94/Camillo_Miola_%28Biacca%29_-_The_Oracle_-_72.PA.32_-_J._Paul_Getty_Museum.jpg

Why is it called nulloracle(𝑐)?

• In cryptography and computer science:
• An oracle is an algorithm that solves a specific problem.
• You can query it but can’t see its internal workings.
• Oracles are often used as theoretical tools in security proofs.

• Our nulloracle(𝑐) reveals only:
• Whether a decrypted ciphertext contains null (00) characters.
• Just a single bit of information (yes/no).

Applied Cryptography - American University of Beirut 24/83

Null-oracle attack

• An adversary who has access to
nulloracle(𝐶) can efficiently compute
Dec(𝐾, 𝐶) for any 𝐶!

• Yes, it really is enough.

nulloracle(𝐶):
𝑀 ≔ CTR.Dec(𝐾, 𝐶)
if𝑀 contains 00 character:

return true
else return false

Applied Cryptography - American University of Beirut 25/83

CTRmode is malleable
Defining malleability

Malleability

An encryption scheme ismalleable if, given
an encryption 𝐶 of an unknown plaintext
𝑀, it is possible to create a new ciphertext
𝐶′ ≠ 𝐶 where𝑀′ = Dec(𝐾, 𝐶′) is somehow
related to𝑀, so that𝑀′ reveals some infor-
mation about𝑀.

• In CTR mode:
𝐶𝑖 = 𝐹(𝐾, 𝐶0 + 𝑖 − 1) ⊕𝑀𝑖

• Flipping a bit in 𝐶𝑖 flips exactly the
same bit in𝑀𝑖 .

• Attackers can make targeted
modifications without knowing the
key.

• Example: change “transfer $100” to
“transfer $900” by modifying just one
byte.

Applied Cryptography - American University of Beirut 26/83

CTRmode is malleable
Defining malleability

• In CTR mode:
𝐶𝑖 = 𝐹(𝐾, 𝐶0 + 𝑖 − 1) ⊕𝑀𝑖

• Flipping a bit in 𝐶𝑖 flips exactly the
same bit in𝑀𝑖 .

• Attackers can make targeted
modifications without knowing the
key.

• Example: change “transfer $100” to
“transfer $900” by modifying just one
byte.

𝐶0 𝐶1 𝐶2 𝐶3

+1 +1 +1

𝐹 𝐹 𝐹

𝑀1 𝑀2 𝑀3

CTR mode decryption.
Source: The Joy of Cryptography

Applied Cryptography - American University of Beirut 27/83

CTRmode is malleable
Defining malleability

• In CTR mode:
𝐶𝑖 = 𝐹(𝐾, 𝐶0 + 𝑖 − 1) ⊕𝑀𝑖

• Flipping a bit in 𝐶𝑖 flips exactly the
same bit in𝑀𝑖 .

• Attackers can make targeted
modifications without knowing the
key.

• Example: change “transfer $100” to
“transfer $900” by modifying just one
byte.

𝐶0 𝐶1 ⊕ Δ⊕ Δ 𝐶2 𝐶3

+1 +1 +1

𝐹 𝐹 𝐹

𝑀1 ⊕ Δ⊕ Δ 𝑀2 𝑀3

CTR mode decryption.
Source: The Joy of Cryptography

Applied Cryptography - American University of Beirut 28/83

CTRmode is malleable
The attack

• Suppose adversary captures
ciphertext 𝐶 and wants to find
plaintext𝑀 = Dec(𝐾, 𝐶).

• Let’s focus on discovering just the
last byte of𝑀.

• If the last byte of𝑀 is 𝑏, then
𝑀 = 𝑀′‖𝑏.

• What if we modify the ciphertext by
XORing the last byte with 𝑏?

• This would turn the last byte of the
plaintext into all zeros (null byte)!

𝐶 ⊕ (… 00‖𝑏) decrypts to:
𝑀 ⊕ (… 00‖𝑏)
= (𝑀′‖𝑏) ⊕ (… 00‖𝑏)
= 𝑀′‖(𝑏 ⊕ 𝑏)
= 𝑀′‖00

Applied Cryptography - American University of Beirut 29/83

CTRmode is malleable
Finding one byte

• Problem: We don’t know 𝑏 in advance!
• Solution: Try all 255 possible values
for 𝑏.

• For each guess 𝑔, we:
• Create 𝐶′ = 𝐶 ⊕ (… 00‖𝑔)
• Send 𝐶′ to the nulloracle()
• If oracle returns true, then 𝑔 = 𝑏!

• When we find the right value, we’ve
discovered the last byte of𝑀.

Try these ciphertexts:
𝐶 ⊕ (… 00‖01)
𝐶 ⊕ (… 00‖02)
𝐶 ⊕ (… 00‖03)

⋮
𝐶 ⊕ (… 00‖fe)
𝐶 ⊕ (… 00‖ff)

Applied Cryptography - American University of Beirut 30/83

CTRmode is malleable
Finding all bytes

• We can use the same approach for any byte in
the plaintext.

• To find the 𝑖-th byte:
• Create a string of all zeros
• Set only the 𝑖-th byte to our guess 𝑔
• XOR this with the ciphertext
• Query the oracle

• By repeating for all bytes, we can recover the
entire plaintext!

𝒜null-oracle

𝑛 ∶= |𝐶1‖⋯‖𝐶ℓ|
𝑀 ∶= ""

for 𝑖 = 1 to 𝑛:
for each 𝑏 ∈ {01,… , ff}:
Δ ∶= (00)𝑛
Δ[𝑖] ∶= 𝑏
if nulloracle(𝐶 ⊕ (0𝜆‖Δ)):
𝑀 ∶= 𝑀‖𝑏
next 𝑖

return𝑀

Applied Cryptography - American University of Beirut 31/83

CTRmode is malleable
The power of chosen-ciphertext attacks

• With just 255 queries per byte, we can completely decrypt any ciphertext!
• For context: decrypting a 1KB file would take about 250,000 queries.
• This is extremely practical for an attacker.
• All from a single bit of information about the plaintext (contains null or not).
• This attack works because:

• CTR mode is malleable (we can make predictable changes to plaintext)
• The system leaks a tiny bit of information about decrypted plaintexts
• Together, these flaws completely break the encryption

Applied Cryptography - American University of Beirut 32/83

Is the null-oracle attack just brute-force?

• Yes and no!
• It’s brute-force on each byte independently:

• To recover 𝑛-byte plaintext: at most 255𝑛 oracle queries
• True brute-force on entire plaintext: 255𝑛 (exponentially worse!)

• For a 16-byte message:
• Null-oracle attack: 4,080 queries (16 ×255)
• True brute-force: 1038 queries (25516)

• This attack is exponentially more efficient than traditional brute-force.

Applied Cryptography - American University of Beirut 33/83

Can we just rate-limit the number of queries?

• Rate-limiting might help, but:
• It only increases attack time, doesn’t prevent
it.

• Attackers can be patient or use multiple
accounts.

• Legitimate users suffer from the
rate-limiting.

• Better approach: cryptographic solutions!
• Fix the fundamental vulnerability, not just
limit its exploitation.

• Create systems that are mathematically
proven to resist chosen-ciphertext attacks.

Applied Cryptography - American University of Beirut 34/83

Is fixing the null-byte bug enough?

• The null-character bug is just one example of a broader class of attacks.
• Format-oracle attacks can exist without implementation bugs!
• They only need:

• A system that accepts untrusted ciphertexts
• Decrypts them
• Behaves differently based on the decryption result
• In a way the attacker can observe

• This behavior can come from:
• Accidental bugs (null-byte crashes)
• Intentional features (error messages, timing differences)
• Normal application logic (web app behaving differently based on decrypted data)

Applied Cryptography - American University of Beirut 35/83

Real-world format-oracle attacks
Padding oracle

• CBC mode requires padding to handle plaintexts that aren’t block-aligned.
• Many implementations crash when encountering invalid padding.
• This exposes an oracle that tells attackers: “Does Dec(𝐾, 𝐶) have valid padding?”
• Attackers can systematically exploit this to decrypt arbitrary ciphertexts.
• Has led to major vulnerabilities in SSH and SSL/TLS protocols.
• Example: POODLE attack against SSL 3.0 affected millions of websites.a

ahttps://appliedcryptography.page/papers/#google-poodle

Applied Cryptography - American University of Beirut 36/83

https://appliedcryptography.page/papers/#google-poodle

Real-world format-oracle attacks
Timing side-channel

• Victim interprets plaintext as a number 𝑛 and performs 𝑛 operations.
• Attackers can measure how long the system takes to respond.
• Response time reveals approximate numerical values inside Dec(𝐾, 𝐶).
• Extremely subtle - even microsecond differences can leak information.
• Successfully used to break older SSH and SSL/TLS implementations.
• Example: Lucky Thirteen attack against TLS revealed message contents through
timing differences.a

ahttps://appliedcryptography.page/papers/#lucky-thirteen

Applied Cryptography - American University of Beirut 37/83

https://appliedcryptography.page/papers/#lucky-thirteen

Real-world format-oracle attack
Apple iMessage

• Older Apple iMessage versions used gzip compression.
• System responded differently when a ciphertext decrypted to:

• A valid gzip file (processed normally)
• An invalid gzip file (error reported)

• This created an oracle revealing: “Is Dec(𝐾, 𝐶) a valid gzip file?”a
• Attackers who understood the gzip format could exploit this to:

• Silently recover private messages
• Bypass encryption entirely

ahttps://appliedcryptography.page/papers/#jhu-imessage

Applied Cryptography - American University of Beirut 38/83

https://appliedcryptography.page/papers/#jhu-imessage

Real-world format-oracle attack
XML format Oracles

• Many systems decrypt data expecting valid XML format.
• If decrypted data isn’t valid XML, system returns an error.
• This exposes an oracle: “Is Dec(𝐾, 𝐶) valid XML?”
• XML has complex syntax rules that attackers can exploit.
• Can allow complete decryption of arbitrary ciphertexts.
• Similar attacks exist for other formats (JSON, HTML, etc.)

Applied Cryptography - American University of Beirut 39/83

I thought CTRmode was secure?
CPA vs. CCA security

• CTR mode is secure against chosen-plaintext attacks (CPA-secure).
• It uses randomness to ensure identical messages encrypt differently each time.
• The adversary cannot distinguish encryptions of known plaintexts.

• But CPA security isn’t enough in many real-world scenarios!
• CPA security only considers attackers who can request encryptions.
• It doesn’t protect against attackers who can submit chosen ciphertexts.

• In the null-oracle attack:
• The victim decrypts ciphertexts chosen by the adversary.
• Even leaking one bit about the plaintext (contains nulls or not) is fatal.
• CPA security doesn’t model or prevent this type of attack.

• This is why we need stronger security notions (CCA security).

Applied Cryptography - American University of Beirut 40/83

CCA Security

Security Against Chosen-Ciphertext
Attacks (CCA Security)

An encryption scheme Σ has security
against chosen-ciphertext attacks if the
following two libraries are indistinguish-
able:

ℒΣ
cca-real

𝐾 ↞ {0, 1}𝜆

cca.enc(𝑀):
𝐶 ≔ Σ.Enc(𝐾,𝑀)
return 𝐶
cca.dec(𝐶):
return Σ.Dec(𝐾, 𝐶)

≊

ℒΣ
cca-rand

𝐾 ↞ {0, 1}𝜆

cca.enc(𝑀):
𝐶 ↞ Σ.𝒞(|𝑀|)
𝒟[𝐶] ≔ 𝑀
return 𝐶
cca.dec(𝐶):
if𝒟[𝐶] defined: return𝒟[𝐶]
return Σ.Dec(𝐾, 𝐶)

Applied Cryptography - American University of Beirut 41/83

Remember our CPA-secure encryption scheme?

• Not CCA-secure!

enc(𝐾,𝑀):
𝑅 ↞ {0, 1}𝜆
𝑆 ≔ 𝐹(𝐾, 𝑅) ⊕𝑀
return 𝑅‖𝑆

Applied Cryptography - American University of Beirut 42/83

Remember our CPA-secure encryption scheme?

• Not CCA-secure!
• In other words, we
can trivially
distinguish between
these libraries:

ℒcca-real

𝐾 ↞ {0, 1}𝜆

cca.enc(𝑀):
𝑅 ↞ {0, 1}𝜆
𝑆 ≔ 𝐹(𝐾, 𝑅) ⊕𝑀
return 𝑅‖𝑆

cca.dec(𝑅‖𝑆):
𝑀 ≔ 𝐹(𝐾, 𝑅) ⊕ 𝑆
return𝑀

��≊

ℒcca-rand

𝐾 ↞ {0, 1}𝜆

cca.enc(𝑀):
𝑅‖𝑆 ↞ {0, 1}2𝜆
𝒟[𝑅‖𝑆] ≔ 𝑀
return 𝑅‖𝑆

cca.dec(𝑅‖𝑆):
if𝒟[𝑅‖𝑆] defined: return𝒟[𝑅‖𝑆]
𝑀 ≔ 𝐹(𝐾, 𝑅) ⊕ 𝑆
return𝑀

Applied Cryptography - American University of Beirut 43/83

Malleability strategy

To break the CCA security of a scheme:

1. Study the decryption algorithm of the scheme. It often helps to draw a
schematic diagram.

2. See whether any changes to a ciphertext make a predictable change to the
plaintext.

3. Formalize an attack in which the adversary:
3.1 Requests the encryption of a chosen plaintext,
3.2 Modifies the ciphertext as above,
3.3 Asks for the modified ciphertext to be decrypted.

Applied Cryptography - American University of Beirut 44/83

Malleability once again

• Not CCA-secure!
• Here’s a distinguisher:

if 𝑅 𝐹

𝑆 𝑀

Dec:

then 𝑅 𝐹

𝑆 ⊕ Δ⊕ Δ 𝑀 ⊕ Δ⊕ Δ

Dec:

Source: The Joy of Cryptography

𝒜

𝑀 ↞ {0, 1}𝜆
Δ ∶= arbitrary, nonzero, 𝜆-bit string
𝑅‖𝑆 ≔ cca.enc(𝑀)
𝑀′ ≔ cca.dec(𝑅‖(𝑆 ⊕ Δ))
return𝑀′ == 𝑀 ⊕Δ

Applied Cryptography - American University of Beirut 45/83

Another example

• Let’s try a harder challenge.

𝑅 𝐹

$ 𝐹 𝑆 𝐹−1 𝑀

𝑀 𝐹

Enc:
Dec:

Source: The Joy of Cryptography

ℒcca-real

𝐾 ↞ {0, 1}𝜆

cca.enc(𝑀):
𝑅 ↞ {0, 1}𝜆
𝑆 ≔ 𝐹(𝐾, 𝑅) ⊕ 𝐹(𝐾,𝑀)
return 𝑅‖𝑆

cca.dec(𝑅‖𝑆):
𝑀 ≔ 𝐹−1(𝐾, 𝐹(𝐾, 𝑅) ⊕ 𝑆)
return𝑀

Applied Cryptography - American University of Beirut 46/83

Another example

• Let’s try a harder
challenge.

𝑅 𝐹

$ 𝐹 𝑆 𝐹−1 𝑀

𝑀 𝐹

Enc:
Dec:

Source: The Joy of Cryptography

ℒcca-real

𝐾 ↞ {0, 1}𝜆

cca.enc(𝑀):
𝑅 ↞ {0, 1}𝜆
𝑆 ≔ 𝐹(𝐾, 𝑅) ⊕ 𝐹(𝐾,𝑀)
return 𝑅‖𝑆

cca.dec(𝑅‖𝑆):
𝑀 ≔ 𝐹−1(𝐾, 𝐹(𝐾, 𝑅) ⊕ 𝑆)
return𝑀

��≊

ℒcca-rand

𝐾 ↞ {0, 1}𝜆

cca.enc(𝑀):
𝑅‖𝑆 ↞ {0, 1}2𝜆
return 𝑅‖𝑆

cca.dec(𝑅‖𝑆):
if𝒟[𝑅‖𝑆] defined: return𝒟[𝑅‖𝑆]
𝑀 ≔ 𝐹−1(𝐾, 𝐹(𝐾, 𝑅) ⊕ 𝑆)
return𝑀

Applied Cryptography - American University of Beirut 47/83

Frankenstein strategy

Try the following approach in a chosen-ciphertext attack:

1. Request two separate encryptions of chosen plaintexts; it often helps to use the
same plaintext.

2. Mix and match parts of the resulting ciphertexts to obtain two Frankenstein
ciphertexts.

3. Ask for the Frankenstein ciphertexts to be decrypted, and see whether anything
interesting happens.

Applied Cryptography - American University of Beirut 48/83

Another example

• Not CCA-secure!
• Here’s a distinguisher:

𝒜

𝑀 ↞ {0, 1}𝜆
𝑅1‖𝑆1 ≔ cca.enc(𝑀)
𝑅2‖𝑆2 ≔ cca.enc(𝑀)
𝑀∗

1 ≔ cca.dec(𝑅1‖𝑆2)
𝑀∗

2 ≔ cca.dec(𝑅2‖𝑆1)
return𝑀∗

1 == 𝑀∗
2

Applied Cryptography - American University of Beirut 49/83

Section 2: Chosen-Ciphertext Attacks

Subsection 2.1

Message Authentication Codes

Symmetric primitive example: hash functions
Reminder

Hash Function Properties

• Takes input of any size[<+->]
• Produces output of fixed size
• Is deterministic (same input→ same
output)

• Even a tiny change in input creates
completely different output

• Is efficient to compute

SHA256(hello) =
2cf24dba5fb0a30e26e83b2ac5
b9e29e1b161e5c1fa7425e7304
3362938b9824
SHA256(hullo) =
7835066a1457504217688c8f5d
06909c6591e0ca78c254ccf174
50d0d999cab0

Note: One character change→
completely different hash!

Applied Cryptography - American University of Beirut 51/83

Expected properties of a hash function
Reminder

• Collision resistance: computationally
infeasible to find two different inputs
producing the same hash.

• Preimage resistance: given the output of a
hash function, it is computationally infeasible
to reconstruct the original input.

• Second preimage resistance: given an input
and an output, it’s computationally infeasible
to find another different input producing the
same output.

SHA-2 compression function. Source:
Wikipedia

Applied Cryptography - American University of Beirut 52/83

Hash functions: what are they good for?
Reminder

• Password storage: Store the hash of the password on the server, not the
password itself. Then check candidate passwords against the hash.

• Data integrity verification: Hash a file. Later hash it again and compare hashes
to check if the file has changed, suffered storage degradation, etc.

• Proof of work: Server asks client to hash something a lot of times before they
can access some resource. Useful for anti-spam, Bitcoin mining, etc.

Applied Cryptography - American University of Beirut 53/83

Message authentication codes

Message Authentication Code (MAC)

A MAC is a cryptographic function that
takes a key 𝐾 and a message 𝑀 and pro-
duces a tag 𝑇 that authenticates the mes-
sage. Only someone with the same key can
verify the tag.

• A MAC provides integrity and
authenticity for messages.

• Unlike hash functions, MACs require a
secret key

• MACs address the malleability
problem we saw with encryption
schemes. Without a MAC, attackers
could modify ciphertexts.

• A secure MAC should be unforgeable,
even after seeing MACs for chosen
messages.

Applied Cryptography - American University of Beirut 54/83

PRFs as MACs

• A pseudorandom function
(PRF) can be used directly as
a MAC!

• The MAC key is the PRF key 𝐾 .
• To authenticate a message 𝑋 :

• Compute the tag
𝑇 = 𝐹(𝐾, 𝑋)

• Send both 𝑋 and 𝑇 to the
recipient

ℒmac-real

𝐾 ↞ {0, 1}𝜆

mac.guess(𝑋, 𝑌):
return 𝑌 == 𝐹(𝐾, 𝑋)

mac.reveal(𝑋):
return 𝐹(𝐾, 𝑋)

≊

ℒmac-ideal

mac.guess(𝑋, 𝑌):
if 𝐿[𝑋] undefined: return false
return 𝑌 == 𝐿[𝑋]

mac.reveal(𝑋):
if 𝐿[𝑋] undefined: 𝐿[𝑋] ↞ {0, 1}𝜆
return 𝐿[𝑋]

Applied Cryptography - American University of Beirut 55/83

From CPA to CCA security
The Encrypt-then-MAC approach

• CPA security isn’t enough in the real world.
• We need protection against chosen-ciphertext attacks.
• Solution: combine encryption with a MAC!.
• Encrypt-then-MAC:

• Encrypt the message normally.
• Compute a MAC tag of the ciphertext.
• Send both ciphertext and tag.
• Receiver verifies the tag before decrypting.

• This prevents adversaries from creating valid modified ciphertexts.

Applied Cryptography - American University of Beirut 56/83

Encrypt-then-MAC: formal construction

Encrypt-then-MACConstruction

LetΣ be an SKE scheme and𝐹 be a PRF
with output length 𝜆whose domain in-
cludes Σ.𝒞. Define a new encryption
scheme:

𝒦 = Σ.𝒦 × {0, 1}𝜆
ℳ = Σ.ℳ

𝒞(ℓ) = Σ.𝒞(ℓ) × {0, 1}𝜆

Enc((𝐾𝑒, 𝐾𝑚),𝑀):
𝐶 ≔ Σ.Enc(𝐾𝑒,𝑀)
𝑇 ≔ 𝐹(𝐾𝑚, 𝐶)
return 𝐶‖𝑇

Dec((𝐾𝑒, 𝐾𝑚), 𝐶‖𝑇):
if 𝐹(𝐾𝑚, 𝐶) ≠ 𝑇 : return err
return Σ.Dec(𝐾𝑒, 𝐶)

Applied Cryptography - American University of Beirut 57/83

CCA security of Encrypt-then-MAC

CCA Security Claim

IfΣ is a CPA-secure encryption scheme
and𝐹 is a securePRF, then theEncrypt-
then-MAC construction is CCA-secure.

• Key insight: theMAC prevents
tampering

• Without the MAC key, adversary
can’t create valid tags.

• Decryption oracle only returns
plaintexts for ciphertexts with
valid tags.

ℒcca-real

𝐾𝑒 ↞ Σ.𝒦
𝐾𝑚 ↞ {0, 1}𝜆

cca.enc(𝑀):
𝐶 ≔ Σ.Enc(𝐾𝑒,𝑀)
𝑇 ≔ 𝐹(𝐾𝑚, 𝐶)
return 𝐶‖𝑇

cca.dec(𝐶‖𝑇):
if 𝐹(𝐾𝑚, 𝐶) ≠ 𝑇 : return err
return Σ.Dec(𝐾𝑒, 𝐶)

≊

ℒcca-rand

𝐾𝑒 ↞ Σ.𝒦
𝐾𝑚 ↞ {0, 1}𝜆

cca.enc(𝑀):
𝐶 ↞ Σ.𝒞(|𝑀|)
𝑇 ↞ {0, 1}𝜆
𝒟[𝐶‖𝑇] ≔ 𝑀
return 𝐶‖𝑇

cca.dec(𝐶‖𝑇):
if𝒟[𝐶‖𝑇] defined: return𝒟[𝐶‖𝑇]
if 𝐹(𝐾𝑚, 𝐶) ≠ 𝑇 : return err
return Σ.Dec(𝐾𝑒, 𝐶)

Applied Cryptography - American University of Beirut 58/83

CombiningMACs and encryption

• Not every way of combining a MAC and CPA-secure encryption achieves CCA
security.

• There are three common approaches to combining them:
• Encrypt-then-MAC: Encrypt message, then MAC the ciphertext.
• Encrypt-and-MAC: Encrypt message and MAC the plaintext separately.
• MAC-then-encrypt: MAC the plaintext, then encrypt both message and tag.

• Only one approach guarantees CCA security when using any CPA-secure
encryption.

Applied Cryptography - American University of Beirut 59/83

Encrypt-then-MAC
CCA-secure

• MAC verifies ciphertext integrity
before decryption.

• Prevents attackers from submitting
modified ciphertexts.

• Always CCA-secure if encryption is
CPA-secure and MAC is secure.

Enc((𝐾𝑒, 𝐾𝑚),𝑀):
𝐶 ≔ Σ.Enc(𝐾𝑒,𝑀)
𝑇 ≔ 𝐹(𝐾𝑚, 𝐶)
return 𝐶‖𝑇

Dec((𝐾𝑒, 𝐾𝑚), 𝐶‖𝑇):
if 𝐹(𝐾𝑚, 𝐶) ≠ 𝑇 : return err
return Σ.Dec(𝐾𝑒, 𝐶)

Applied Cryptography - American University of Beirut 60/83

Encrypt-and-MAC
Not even CPA-secure!

• MAC is computed on the plaintext
• Same plaintext always produces same
tag, leaking equality information.

• Not even CPA-secure, let alone
CCA-secure.

Enc((𝐾𝑒, 𝐾𝑚),𝑀):
𝐶 ≔ Σ.Enc(𝐾𝑒,𝑀)
𝑇 ≔ 𝐹(𝐾𝑚,𝑀)
return 𝐶‖𝑇

Dec((𝐾𝑒, 𝐾𝑚), 𝐶‖𝑇):
𝑀 ≔ Σ.Dec(𝐾𝑒, 𝐶)
if 𝐹(𝐾𝑚,𝑀) ≠ 𝑇 : return err
return𝑀

Applied Cryptography - American University of Beirut 61/83

MAC-then-encrypt
It’s complicated

• Tag is hidden inside the ciphertext
• Whether this is CCA-secure depends
on the specific encryption scheme.

• Not generally CCA-secure for all
CPA-secure encryption schemes.

Enc((𝐾𝑒, 𝐾𝑚),𝑀):
𝑇 ≔ 𝐹(𝐾𝑚,𝑀)
𝐶 ≔ Σ.Enc(𝐾𝑒,𝑀‖𝑇)
return 𝐶

Dec((𝐾𝑒, 𝐾𝑚), 𝐶):
𝑀‖𝑇 ≔ Σ.Dec(𝐾𝑒, 𝐶)
if 𝐹(𝐾𝑚,𝑀) ≠ 𝑇 : return err
return𝑀

Applied Cryptography - American University of Beirut 62/83

Encrypt +MAC security comparison

Construction CPA-secure? CCA-secure?
Encrypt-then-MAC Yes Yes
Encrypt-and-MAC No No
MAC-then-encrypt Yes Maybe

• Encrypt-then-MAC is the safest option.
• Encrypt-and-MAC should never be used.
• MAC-then-encrypt requires case-by-case analysis.

Applied Cryptography - American University of Beirut 63/83

Section 2: Chosen-Ciphertext Attacks

Subsection 2.2

Authenticated Encryption

Authenticated Encryption: beyond CCA security

• CCA security is stronger than CPA security, but still not the gold standard.
• CCA security says: adversary-generated ciphertexts won’t reveal useful
information.

• But CCA security doesn’t require that they decrypt to err.
• For many applications, we want a stronger guarantee:

• Only key-holders can create valid ciphertexts.
• All other ciphertexts should be rejected as invalid.

• This property is called Authenticated Encryption (AE).
• Authenticated encryption provides both confidentiality and authenticity.

Applied Cryptography - American University of Beirut 65/83

Authenticated Encryption: formal definition

Authenticated Encryption

A SKE scheme Σ is a secure
authenticated encryption (AE)
scheme if the following two
libraries are indistinguishable:

ℒΣ
ae-real

𝐾 ↞ Σ.𝒦
ae.enc(𝑀):
return Σ.Enc(𝐾,𝑀)

ae.dec(𝐶):
return Σ.Dec(𝐾, 𝐶)

≊

ℒΣ
ae-rand

ae.enc(𝑀):
𝐶 ↞ Σ.𝒞(|𝑀|)
𝒟[𝐶] ≔ 𝑀
return 𝐶
ae.dec(𝐶):
if𝒟[𝐶] defined: return𝒟[𝐶]
else: return err

Applied Cryptography - American University of Beirut 66/83

AE vs. CCA security

• Key difference: howwe handle
adversary-created ciphertexts.

• In ℒΣ
ae-rand, any ciphertext not created

by the library always decrypts to err.
• In ℒΣ

cca-rand, such ciphertexts could
decrypt to anything (not necessarily
err).

• So AE requires:
• Adversary cannot tell real from
random ciphertexts (as in CPA)

• Adversary cannot create new valid
ciphertexts (authentication)

• AE is strictly stronger than CCA
security.

• Every AE scheme is CCA-secure, but
not every CCA-secure scheme is an AE.

• Making the distinction explicit helps
us design better protocols.

• AE is what you should aim for in
practice.

Applied Cryptography - American University of Beirut 67/83

How Encrypt-then-MAC achieves AE

• Remember our Encrypt-then-MAC
construction:
• Encrypt the plaintext: 𝐶 ≔ Σ.Enc(𝐾𝑒,𝑀)
• MAC the ciphertext: 𝑇 ≔ 𝐹(𝐾𝑚, 𝐶)
• Send both: 𝐶‖𝑇

• It achieves AE security because:
• Without 𝐾𝑚, adversary can’t forge valid tags.
• Any ciphertext not created by the system will
fail MAC verification.

• MAC verification failures lead to err.
• The proof is nearly identical to CCA security
proof.

AE Security of Encrypt-then-
MAC

Encrypt-then-MAC is a secure AE,
if the underlying Σ is a CPA-
secure SKE and 𝐹 is a secure PRF.

AE implies CCA

If an encryption scheme Σ is a se-
cure AE, then it is also CCA-secure.

Applied Cryptography - American University of Beirut 68/83

Authenticated Encryption: in practice

• Modern cryptographic protocols almost always use authenticated encryption.
• Common AE implementations:

• AES-GCM (Galois/Counter Mode): most widely used, combines CTR mode with a
MAC.

• ChaCha20-Poly1305: popular alternative to AES-GCM, especially on devices
without AES hardware.

• AES-CBC + HMAC-SHA256: older approach, uses Encrypt-then-MAC with AES in CBC
mode.

• Important implementation rule: verify before decrypt!
• Always check the MAC before decrypting.
• Prevents timing side-channels based on decryption behavior.
• Helps protect against padding oracle attacks and similar vulnerabilities.

Applied Cryptography - American University of Beirut 69/83

AES-GCM: Galois/Counter Mode

• AES-GCM (Galois/Counter Mode) is the most
widely used AEAD scheme.

• Combines AES in CTR mode (for encryption)
with GMAC (for authentication).

• Extremely efficient:
• Single pass over the data.
• Parallelizable.
• Hardware acceleration widely available.

• Used in: TLS 1.2/1.3, IPsec, SSH, and many other
protocols.

AES-GCM.Enc(𝐾, 𝑁, 𝐴,𝑀):
𝐻 ≔ AES(𝐾, 0128)
for 𝑖 = 0 to ⌈|𝑀|/128⌉ − 1 ∶
𝐶𝑖 ≔ 𝑀𝑖 ⊕ AES(𝐾, 𝑁‖𝑖)

𝑇 ≔ GHASH𝐻(𝐴, 𝐶)⊕
AES(𝐾, 𝑁‖0)

return 𝐶‖𝑇

Applied Cryptography - American University of Beirut 70/83

AES-GCM: Galois/Counter Mode

• Inputs:
• Key 𝐾 (128, 192, or 256 bits)
• Nonce 𝑁 (usually 96 bits)
• Associated data 𝐴 (optional)
• Plaintext𝑀

• Encryption process:
• AES-CTR for confidentiality.
• GHASH (Galois field multiplication)
for authentication.

• Authentication tag 𝑇 protects both
ciphertext and associated data.

𝑀1 𝑀2 𝑀ℓ

$ +1 +1

𝐹 𝐹 𝐹

𝐶0 𝐶1 𝐶2 𝐶ℓ 𝐶ℓ+1

𝐹

𝐾𝑚

CTR encryption

CW-MAC

Source: The Joy of Cryptography

Applied Cryptography - American University of Beirut 71/83

AES-GCM: Galois/Counter Mode

• Security strengths:
• Provides confidentiality, integrity, and authenticity
• Formally proven secure (assuming AES is secure)
• Fast and widely trusted

• Critical implementation requirements:
• Never reuse a nonce with the same key!
• A repeated nonce can lead to complete loss of confidentiality and authentication
• 96-bit nonces are recommended (other sizes are less efficient)
• Authentication tag should be at least 128 bits long

Applied Cryptography - American University of Beirut 72/83

Key commitment in authenticated encryption

• Key commitment: a ciphertext should only decrypt to a valid plaintext under
the key used to generate it.

• Most AEAD schemes (including AES-GCM) don’t guarantee this property!a

• Attack scenario:
1. Attacker creates special ciphertext 𝐶.
2. When decrypted with key 𝐾1: harmless message.
3. When decrypted with key 𝐾2: malicious content!
4. Enables plausible deniability, content smuggling, etc.

• Practical impact:
• Attacker can create ciphertexts that decrypt differently under different keys.
• Enables attacks in multi-recipient contexts.
• Affects real applications (e.g., messaging, encrypted files).

ahttps://appliedcryptography.page/papers/#key-commitment

Applied Cryptography - American University of Beirut 73/83

https://appliedcryptography.page/papers/#key-commitment

ChaCha20-Poly1305

• ChaCha20-Poly1305 is a modern AEAD
construction:
• ChaCha20 stream cipher for encryption.
• Poly1305 MAC for authentication.

• Designed by Daniel J. Bernstein.a

• Key characteristics:
• No table lookups (better resistance to timing
attacks)

• Excellent performance on devices without
AES hardware.

• Widely used in TLS 1.3, Signal, WireGuard...

aDoes the class want to hear about Bernstein vs. United States?

ChaCha20-Poly1305.Enc(𝐾, 𝑁, 𝐴,𝑀):
key𝑝 ≔ ChaCha20(𝐾, 𝑁, 0)0..31
𝐶 ≔ 𝑀 ⊕ ChaCha20(𝐾, 𝑁, 1)
data ≔ pad(𝐴)‖pad(𝐶)‖

len(𝐴)‖len(𝐶)
𝑇 ≔ Poly1305key𝑝(data)
return 𝐶‖𝑇

Applied Cryptography - American University of Beirut 74/83

Comparing AEAD implementations

Property AES-GCM ChaCha20-Poly1305 AES+HMAC
Performance (HW accel.) Excellent Good Good
Performance (no accel.) Poor Excellent Moderate
Security level 128-256 bits 256 bits 128-256 bits
Side-channel resistance Moderate Excellent Moderate
Parallelizable Yes Partially No
Nonce sensitivity Very high High Moderate
Overhead Low (single pass) Low (single pass) Higher (two pass)
Implem. complexity Moderate Low High

Applied Cryptography - American University of Beirut 75/83

Replay attacks
Step 1: Alice sends original message

alice: bob:

what file to display?

𝐶 := Enc(𝐾, family-recipes.txt)

Dec(𝐾,𝐶) ≠ err X
display family-recipes.txt

Source: The Joy of Cryptography

Applied Cryptography - American University of Beirut 76/83

Replay attacks
Step 2: Attacker replays message in a different context

adversary: bob:

what file to delete?

same 𝐶 as above

Dec(𝐾,𝐶) ≠ err X
delete family-recipes.txt

Source: The Joy of Cryptography

Applied Cryptography - American University of Beirut 77/83

Replay attacks
Authenticated encryption didn’t save us

• Even with authenticated encryption, context matters!
• Scenario: Alice sends Bob encrypted commands.

• Each ciphertext contains Alice’s genuine intent.
• Bob trusts any ciphertext that decrypts successfully.

• Vulnerability: An adversary can replay legitimate ciphertexts.
• Alice once sent “Delete temporary files”.
• Adversary replays it when Alice meant to say “Display files”.

Applied Cryptography - American University of Beirut 78/83

Associated data

• Solution 1: Include context in the plaintext
• “ACTION: DISPLAY” before the actual message.
• Inefficient - increases message size.
• Both parties already know the context.

• Better solution: Associated Data (AD)
• Context that sender and receiver already know.
• Used during encryption and decryption.
• Doesn’t increase ciphertext size.

• How it works:
• Enc(𝐾, 𝐴,𝑀) → 𝐶 where 𝐴 is associated data.
• Dec(𝐾, 𝐴, 𝐶) → 𝑀 or err

Applied Cryptography - American University of Beirut 79/83

AEAD: formal definition

AEAD

An encryption scheme Σ with associated
data is a secure authenticated encryption
with associated data (AEAD) scheme if the
following two libraries are indistinguish-
able:

ℒΣ
aead-real

𝐾 ↞ Σ.𝒦
aead.enc(𝐴,𝑀):
return Σ.Enc(𝐾, 𝐴,𝑀)

aead.dec(𝐴, 𝐶):
return Σ.Dec(𝐾, 𝐴, 𝐶)

≊

ℒΣ
aead-rand

aead.enc(𝐴,𝑀):
𝐶 ↞ Σ.𝒞(|𝑀|)
𝒟[𝐴, 𝐶] ≔ 𝑀
return 𝐶
aead.dec(𝐴, 𝐶):
if𝒟[𝐴, 𝐶] defined:
return𝒟[𝐴, 𝐶]

else: return err

Applied Cryptography - American University of Beirut 80/83

Usefulness of AEADs

• AEAD (Authenticated Encryption with Associated Data) scheme guarantees:
• Ciphertexts reveal nothing about plaintexts (confidentiality).
• Only ciphertexts created by the legitimate sender will decrypt without error
(authenticity).

• Decryption only succeeds when the correct associated data is used (context
binding).

• What to use as associated data?
• Protocol information: “DISPLAY” vs “DELETE”.
• Session identifiers or timestamps.
• Previous messages in the conversation.
• Any contextual information both parties already know.

• Use as much associated data as relevant - it’s cryptographically “free”!

Applied Cryptography - American University of Beirut 81/83

Solution: use associated data to provide context

alice: bob:

what file to display?

𝐶 := Enc(𝐾, displaydisplay, family-recipes.txt)

Dec(𝐾, displaydisplay,𝐶) ≠ err X
display family-recipes.txt

· · · (later) · · ·

adversary:

what file to delete?

same 𝐶 as above

Dec(𝐾, deletedelete,𝐶) = err !!!!
error!

Source: The Joy of Cryptography

Applied Cryptography - American University of Beirut 82/83

Applied Cryptography
CMPS 297AD/396AI
Fall 2025
Part 1: Provable Security

1.5: Chosen-Plaintext &
Chosen-Ciphertext Attacks

Nadim Kobeissi
https://appliedcryptography.page

https://appliedcryptography.page

	Chosen-Plaintext Attacks
	Chosen-Ciphertext Attacks
	Message Authentication Codes
	Authenticated Encryption

