2O\ AMERICAN
) UNIVERSITY

Applied Cryptography
CMPS 297AD/396AI
Fall 2025

Part 1: Provable Security
1.4: Pseudorandomness

Nadim Kobeissi
https://appliedcryptography.page

https://appliedcryptography.page

Section 1

Pseudorandom Generators

Limitations of One-Time Pad

One-time pad is not a particularly useful encryption scheme in practice.

T

* The key must be as long as the plaintext!
* This creates a chicken-and-egg situation:

* To privately send n bits of information,
* We must already privately share n bits of information.

* Impractical for most real-world applications.

¢ Clearly this is not what we're doing when we use HTTPS,
* or WhatsApp, or pay for something via a debit card...

* We need encryption schemes where the key can be smaller than the message.

Applied Cryptography - American University of Beirut 3/72

Idea: find a way to expand the key

* Given a key kg of size |kg| < |m|, find a way to obtain |k,| > |m|

* In the real world, we have two kinds of symmetric encryption schemes:
° Block ciphers: AES, 3DES, etc.
° Stream ciphers: ChaCha20, RC4, etc.

* This is exactly what stream ciphers do!

* Start with a small key kg of a fixed size |k,| = 4,
* Magically expand it to k, where |k,| > |m]|,
* ENC(K,M)=K&® M

Applied Cryptography - American University of Beirut 4/72

Requirements for Key Expansion

* Our method would need to be deterministic, so that both the sender and
receiver can expand their key in the same way (to encrypt/decrypt).

* Its output distribution would need to be uniform, since that is a crucial property
for the security of OTP.
* Unfortunately, it's not possible to achieve both of these properties
simultaneously.
* Suppose the expansion method is a deterministic function G : {0, 1}* — {0, 1}"**¢
° Its outputs are ¢ bits longer than its inputs!
* There are 2% strings of length n + ¢ but only (at most) 2" possible outputs of G
* So the outputs of G can never induce a uniform distribution.

Applied Cryptography - American University of Beirut 5/72

Enter pseudorandomness

* In cryptography, something is
pseudorandom ifiit is
indistinguishable from a uniform
distribution.®

* We need to invent some “secure
pseudorandom generator” (PRG) G
that takes a seed S and ends up being
indistinguishable from a true
uniform distribution when thrown
into a library:

AThe Oxford English Dictionary defines the prefix pseudo- as “apparently
but not really”

£ prg-real

PRG.SAMPLE():

S « {0, II.}’1
return G(S)

12

Lprg-rand

PRG.SAMPLE():

Y « {0,1}A*¢

returnY

Enter pseudorandomness

* In cryptography, something is
pseudorandom if it is
indistinguishable from a uniform
distribution.®

* We need to invent some “secure
pseudorandom generator” (PRG) G
that takes a seed S and ends up being
indistinguishable from a true
uniform distribution when thrown
into a library:

AThe Oxford English Dictionary defines the prefix pseudo- as “apparently
but not really.”

Applied Cryptography - American University of Beirut

{G, 1}/\“’

pseudorandom distribution

{0’ 1)/1+(

uniform distribution

Source: The Joy of Cryptography

7/ 72

Enter pseudorandomness

* We don’t know how to make PRGs, or
even if they exist.

* So we simply invent functions that
we think act close enough to PRGs
(when subjected to statistical and
mathematical analysis).

£ prg-real

PRG.SAMPLE():

S « {0,144
return G(S)

2

Lprg—rand

PRG.SAMPLE():
Y « {0, 1A+
returnY

One-time secrecy of a SKE

3
Lots-real
OTS.ENC(M):

K « XX
C :=Z.Enc(K,M)
return C

An SKE scheme X has one-time secrecy if
the following libraries are interchangeable:

LZ

ots-rand

OTS.ENC(M):

C«Z.C
return C

Applied Cryptography - American University of Beirut

An encryption scheme has one-time
secrecy if its ciphertexts are uniformly
distributed, when keys are sampled
uniformly, kept secret, and used for only
one encryption, and no matter how the
plaintexts are chosen.

9/72

Does a PRG-based encryption scheme

have one-time secrecy?

by

prg-real
oTS.ENC():

S « {0,144
return G(S)

2

'C’prg—rand

OTS.ENC():
Y « {9, 1}l+€
returnY

Then:

L

ots-real

K « {0,1}4
Y := G(K)
C:=YM
return C

OTS.ENC(M):

2

Y

ots-rand

OTS.ENC(M):

C « {G, 1}/1+€

return C

Attacking PRGs

* Assume that G(S) is a secure PRG.
* Is H(S) secure?

H(S)
A||B := G(S)
C||D := G(B)

return A||B||C||D

H
£ prg-real

oTS.ENC():

S « {8,1}4

A|B = G(S)
C|D = G(B)
return A||B||C||D

[-

H
’Cprg—rand

OTS.ENC(M):
Y « {0,1}*
returnY

Attacking PRGs

ng—real
* Assume that G(S) is a secure PRG. y
oTs.ENc():
* Is H(S) secure? —10/1
 No: A|B|C|D = ots.enc() | ©| ° I«_ {0, i)
] A|B = G(S
. H _ return G(B) == C||D
PI‘[./I <>l"’prg—real = tr‘ue] =1 C|\D :== G(B)
return A||B||C||D

Attacking PRGs

* Assume that G(S) is a secure PRG.
* Is H(S) secure?

H
* No: A ‘Cprg—rand

. H = .
Pr[A o Lyl e = true] =1 A[B|C|D := ots.Enc() || OTSENC(M):

4
. Pr[./l Ong-rand = 'tr‘ue] = % return G(B) == C||D Y« {06,1}
2 returnY

* Difference certainly not

negligible.

Example: RC4 (a stream cipher)

Used in WEP, SSL/TLS, and other protocols.

Simple PRG that takes a seed and produces a

keystream.

* Basic operation:

* Initialize S-box with permutation of bytes
0-255.

° Use key to scramble the S-box.

°* Generate pseudorandom bytes iteratively.

* Several weaknesses found over time:

* Statistical biases in initial output.
* Correlation between key and output bytes.
* Considered cryptographically broken today.

Applied Cryptography - American University of Beirut

RC4 is presented as a historical
example only. It should not be
used in new applications due to
known weaknesses. Modern al-
ternatives include ChaCha20.

14

/72

RC4 PRG Algorithm

* RC4 generates a pseudorandom stream of
bytes used to encrypt data.
v def PRGA(S):
i=0
j=0

1
* After key setup (which initializes array S), 2
the algorithm produces keystream bytes: 3
o g 4 while True:
* Each output byte requires simple . R

operations: % = (j + SLil) % 256
° Array index calculations. 7
8
9
(0]

* Array value swapping.
* Modular addition.

S[il, S[j1 = S[jl, S[i]
K = S[(S[i] + S[j]1) % 256]
yield K

* Fast implementation in software.

. . - . RC4 PRG implementation in Python.
* Despite simplicity, it has several

cryptographic weaknesses.

Applied Cryptography - American University of Beirut 15/72

Section 2

Pseudorandom Functions

Pseudorandom function: definition

A function F : {0, 1} x {08,1}" — {0, 1}™
is a secure pseudorandom function (PRF)
if the following two libraries are indistin-
guishable:

* ntheinput length of the PRF.
* mthe output length of the PRF.

* Aisthe key size and hence the
security parameter.

F
£ prf-real

K « {8,1}4

PRF.QUERY(X):

return F(K,X)

2

£ srf-rand
L=[]
PRF.QUERY(X):

if L[X] undefined:
L[X] « {0,1}™
return L[X]

PRG vs PRF: Key Differences

* PRG (Pseudorandom Generator):

* Takes short seed, produces longer
output

* Generates entire output as a
monolithic string

* G:{0,1}} - {0, 1}4*¢

Applied Cryptography -

F
Lprf—rand
L:=[]

PRF.QUERY(X):

if L[X] undefined:
L[X] « {8, 1}™

return L[X]

American University of Beirut

* PRF (Pseudorandom Function):
° Maps inputs to pseudorandom
outputs
* Provides access to individual blocks
of output
* Can generate output for any input
on demand
© F:{0,1}* x{0,1}" - {0,1}"
* PRFs enable “selective access” to
pseudorandom values without
generating the entire sequence

18/72

PRE:F,=X—>Y

* We want the mapping to be:
* One-way
° “Randomized”
° Relations between inputs
not reflected in outputs

Applied Cryptography - American University of Beirut

Input space (domain) X Output (range) Y

Size: fixed

Size: infinite!

19/72

Takes input of any size
Produces output of fixed size

Is deterministic (same input — same
output)

* Even atiny change in input creates
completely different output

Is efficient to compute

PRFs in the real world: hash functions

SHA256(hello) =
2cf24dba5fb0a3be26e83b2acS
b9e29elbl161e5clfa7425e7304
3362938h9824

SHA256(hullo) =
7835066a1457504217688c85d
06909c6591eBca78c254ccfl74
50d0d999cabl

Note: One character change —
completely different hash!

Expected properties of a hash function

* Collision resistance: computationally
infeasible to find two different inputs (AIBICIDIEIFIGIH]
producing the same hash.

* Preimage resistance: given the output of a
hash function, it is computationally infeasible
to reconstruct the original input.

* Second preimage resistance: given an input
and an output, it's computationally infeasible
to find another different input producing the SHA-2 comprevsii(?:ezui:ctionvSource:
same output.

¢
[A[BICID[E[F[GTH]

Applied Cryptography - American University of Beirut 21/72

Hash functions: what are they good for?

* Password storage: Store the hash of the password on the server, not the
password itself. Then check candidate passwords against the hash.

* Data integrity verification: Hash a file. Later hash it again and compare hashes
to check if the file has changed, suffered storage degradation, etc.

* Proof of work: Server asks client to hash something a lot of times before they
can access some resource. Useful for anti-spam, Bitcoin mining, etc.

Applied Cryptography - American University of Beirut 22/72

An insecure PRF construction

—\
J

The function F(K,X) = G(K) & X is
not a secure PRF, even if G is a secure
PRG.

* This construction fails because:
° The key K is only fed through
the PRG once.
* The same value G(K) is used for
all queries.
* This creates exploitable
patterns in outputs.

F
£ prf-real

K « {0,1}4

PRF.QUERY(X):

return G(K) @ X

£ grf-rand
L := []
PRF.QUERY(X):

if L[X] undefined:
L[X] « {0,1}™
return L[X]

An insecure PRF construction

* When an adversary sees two outputs:

Y, = GK) @ X,
Y, = G(K) & X,
LF
prf-real
* Taking Y; @ Y; causes G(K) to cancel: K « (0,13
— PRF.QUERY(X):
0, =GK) &X &GK)PX, Tetum G(K) @ X

=X1 ®X2

* Inatruly random function, V@& Y, = X; & X,
would be extremely unlikely!

Applied Cryptography - American University of Beirut

ijrf»rand
Le=[]

PRF.QUERY(X):

if L[X] undefined:

L[X] « {0,1}"
return L[X]

24/ 72

Another insecure PRF construction

)
J

The function H(K;|K,, X1(X2) =
F(K;,X;) & F(K,,X5) is not a secure
PRF, even if F is a secure PRF.

* An unsuccessful attempt to use a PRF
with shorter input length to build one
with a larger input length.

LH

prf-real

K|k, « {0,1}*

PRF.QUERY(X || X,):

return F(Ky,X;) @ F(K>, X3)

4

L

H
prf-rand
Li=1]

PRF.QUERY(X | X,):

if L[X,|1X,] undefined:
LIX|X;] « {0,137

return L[X; || X;]

Why the previous PRF is broken

* When inputs share the same first half,
the corresponding outputs of H have
a common term F(K;, X;)

* Consider querying four inputs: A||B,
A|B’, A|B,A'||B' (where A # A’ and

B+B)
Yl = F(KI’A) @F(K25B))
}f2 = F(Kl’A) @F(KZ’B,) ‘

Y; = F(Ky, A') @ F(K3, B)
Kl = F(KlaA,) GBF(KZaB,)

Applied Cryptography - American University of Beirut

If we XORY; @ Y,, the F(K;,A) terms
cancel out.

Similarly, Y; @ Y, causes F(K;,A’) to
cancel:

*Y10Y, =F(K;,B)® F(K,,B')

* 30Y, =F(K,,B)®F(K,,B)

SOPI[Y @Y, ==Y, @ Y] =1
With a truly random function,
PIY, @Y, == ;@ Y] = —
(extremely unlikely!)

Also, Given Yj...3, we can predict Y,!

26 /72

The Golden Rule of PRFs

If a PRF F is being used as a component in a larger construction H, then security usually rests
on how well H can ensure distinct inputs to F.

* When analyzing PRF security, focus on input uniqueness.

* Repeated inputs to a PRF create exploitable patterns.

* Evenif F is secure, H can be broken if it causes F to receive duplicate inputs.
* Don't try to directly distinguish F’s outputs from uniform.

* Instead, exploit how H uses F incorrectly.

* Find input patterns that force collisions within F.

Applied Cryptography - American University of Beirut 27/72

Section 3

Pseudorandom Permutations

What is a permutation?

~ * Example: simple substitution cipher.
Each letter maps to another letter:

A permutation is a rearrangement where

each input value maps to exactly one out- a—g bra cHr
put value, and each possible output ap- d—b, el
pears exactly once.

\ * Under this permutation:

* “cabbage” ~ “rgaagdl”

* Permutations rearrange elements
* “rgaagdl” — “cabbage”

rather than transforming them.
* This mapping is reversible because

* Every element in the domain appears))
it's a permutation over {a, ..., z}.

exactly once in the range.
* Each letter appears exactly once in

* The function is invertible.
the output alphabet.

Applied Cryptography - American University of Beirut 29/72

PRF versus PRP

Pseudo-Random Function (SHA-2) Pseudo-Random Permutation (AES)

. . * |nput and output are the same
* Inputis arbitrary-length, P P

length, forming a permutation.
* Output is fixed-length, looks random

(as discussed earlier). * Each input maps uniquely to one

output, allowing invertibility.
* Indistinguishable from a truly

random function by an adversary
with limited computational power.

* Indistinguishable from a truly
random permutation by an adversary
with limited computational power.

Applied Cryptography - American University of Beirut 30/72

PRPs compared to PRFs

* Invertibility: PRPs can be efficiently inverted given the key
° Enable both encryption and decryption
° Can recover input from output (and vice versa)
* No range collision: Each input maps to a unique output
* Provides perfect input recovery
° Reduces vulnerability to collision-based attacks, birthday attacks, and certain
forms of differential cryptanalysis
* Versatility: A secure PRP can be used as a PRF
* “Downgrade” trivially by ignoring inverse capability
* The reverse is not true (PRF - PRP conversion is complex)

Applied Cryptography - American University of Beirut 31/72

PRE:F,=X—>Y

* We want the mapping to be:
* One-way
° “Randomized”
° Relations between inputs
not reflected in outputs

Applied Cryptography - American University of Beirut

Input space (domain) X Output (range) Y

Size: fixed

Size: infinite!

32/72

PRP:F =X > X

* Bijective (two-way)

* Injective: no two inputs
map to same output (no
collisions)

° Surjective: Every output
has one corresponding
input

* “Randomized”

* Relations between inputs
not reflected in outputs

Applied Cryptography - American University of Beirut

Input space (domain) X

Output (range) X

Size: fixed

Size: fixed

33/72

“Lazy dictionaries” versus “lazy permutations”

F
- Lprp—rand
£ rf-ran
prf-rand [= []
L:=[] PRP.QUERY(X):
PRF.QUERY(X): if L[X] undefined:
if L[X] undefined: Y «{0,1}" \ y
L[X] « {0, 1} y=yul{Y}
return L[X] LIX]=Y
return L[X]

“Lazy dictionaries” versus “lazy permutations”

* While the PRF (on the left) just picks

random outputs for each input... Lgrp-rand
* The PRP (on the right) must ensure
outputs are never repeated: L:=[]
° ytracks all outputs used so far PRP.QUERY(X):

* \ means “set difference” - pick from

. if L[X] undefined:
values notiny

° Umeans “set union” - add the new Y« {0,1}" \ y
valuetoy y:=yuiY}
* This ensures each output appears L[X]:==Y
exactly once - the definition of a return L[X]

permutation

Pseudorandom function: definition

A function F : {0, 1} x {08,1}" — {0, 1}™
is a secure pseudorandom function (PRF)
if the following two libraries are indistin-
guishable:

* ntheinput length of the PRF.
* mthe output length of the PRF.

* Aisthe key size and hence the
security parameter.

F
£ prf-real

K « {8,1}4

PRF.QUERY(X):

return F(K,X)

2

£ srf-rand
L=[]
PRF.QUERY(X):

if L[X] undefined:
L[X] « {0,1}™
return L[X]

Pseudorandom permutation: definition

F
r) Lprp—rand
A keyed permutation F* is a secure pseudo- Lt ! L:=[]
random permutation (PRP) if the following AL -
two libraries are indistinguishable: 1 PRP.QUERY(X):
K «{0,1} & | if L[X] undefined:
. n
* ntheinput length of the PRP. Also PRP.QUERY(X): Y« {8,1)" \ y
the output length! return F(K, X) y:=yUulY}
* Aisthe key size and hence the LX]=Y
security parameter. return L[X]

Pseudorandom permutation: definition

F
() Lprp—rand
Akeyed permutation F* is a secure pseudo- Lt ! L:=[]
random permutation (PRP) if the following AL _
two libraries are indistinguishable: 1 PRP.QUERY(X):
K «{0,1} ~| if L[X] undefined:
. n
* We obviously can't use £ . 4in the PRP.QUERY(X): Y« {01\ y
real world. return F(K, X) y=yul{Y}
* It doesn't scale. So we need practical LiX]=Y
approximative alternatives. return L[X]

Building a permutation through Feistel ciphers

* Anr-round Feistel cipher with round Xo X
functions F,, ..., E. is defined as /‘
follows: —

F D
F(Xo[IX1):
fori=1tor: N
2 2
Xiy1 =X @ Fi(Xy) \/*
/
return X, || X, 11 % GE

* AFeistel cipher is always a
permutation on {0, 1}*", regardless of
. . Feistel cipher.
Its rOUnd funCtlons- Source: The Joy of Cryptography

Building a permutation through Feistel ciphers

L A Feistel cipher is always a permutation on {0, 1}*", regardless of its round functions.

* Proof: Each round of a Feistel cipher computes the next block as:
* Xip1 = X1 ® Fi(X))
* To invert this round, we can rearrange the equation to solve for X;_, in terms of
X;and X, q:
* Xio1 = Xi1 ® Fi(X))
* F, itself does not need to have an inverse - both the forward and inverse
direction of the Feistel cipher evaluate F; in the forward direction! [

Applied Cryptography - American University of Beirut 40/72

Building a permutation through Feistel ciphers

2

Xr+1

&

« F~listhe inversion, allowing Feistel
ciphers to function as PRPs:

T
<)

”:_I(Xr”Xr+1):

fori =rdownto 1:
X1 = X1 © Fi(X))

return Xy || X;

i

T
&

A

Feistel cipher inversion.
Source: The Joy of Cryptography

Forward and backward on one slide

Just in case it's helpful

F(Xo[1X7):
fori=1tor:

Xt =X;_, @ F(X))
return X, || X, 41

Applied Cryptography - American University of Beirut

F (X1 X 10):

fori =rdowntoI:
Xi1 =X @ Fi(X))

return X, || X;

42 /72

Keyed Feistel ciphers

* Let's add a key in there. Wow, encryption!

* K;...; called is the key schedule.

* If each round function F; uses a distinct key P - 1K XollX0):

K;, it increases the security of the Feistel fori=1tor:

network against certain attacks. X1 =X, ® F(K;, X;)
* By using a PRF as round function F;, the return X, || X,

security of the Feistel cipher would be
grounded on the PRF's security basis.

Applied Cryptography - American University of Beirut 43 /72

Meet-in-the-middle attacks on Feistel ciphers

* Using the same key for all rounds creates
significant vulnerabilities.

* A meet-in-the-middle attack can break anr-round
Feistel cipher with complexity > F(K, X,|X,):

* The atta}ck works by computing partlal fori=1tor
encryptions from both ends: X,y = X;_, @ F(K, X))
1. Forward: Compute halfway through encryption.
2. Backward: Compute halfway through decryption. return X, |1 X,
3. Look for “meeting points” in the middle.

* With identical round functions, effective security
may be only half the number of rounds.

Applied Cryptography - American University of Beirut 44172

Breaking a 2-round Feistel cipher

* A2-round Feistel cipher cannot be a
secure PRP.

American University of Beirut

F(K1 (K3, XolX1):
X5 =X ® F(Ky,X1)
X3 =X, ® F(K3,X3)
return X, |1 X;

45 /72

Applied Cryptography -

Breaking a 2-round Feistel cipher

* Once again, real or random?

* We can indeed produce an
adversary A that can
distinguish between these
two libraries.

L[F

prp-real

K ||K, « {0,1}*4
PRP.QUERY[(X X7):
X, =X ® F(Ky,Xy)

X; =X @ F(K3,X;)
return X, |1 X5

Z

F
L prp-rand

L=1]

PRP.QUERY(X):

if L[X] undefined:
Y «{0,1}" \ y
y=yu{Y}
LIX]=Y

return L[X]

Breaking a 2-round Feistel cipher

* Let's query (A||B) and (A’||B)

where A # A’
* Y,||Y> = PRP.QUERY(A|B) oF
’ 0 ’ prp-real
* Y/|Y; = PRP.QUERY(A'||B)
. . A
* Ina2-round Feistel cipher: K|k, « {0,1}%
* Y, =A®F(Ky,B) YIY; = PRPQUERY(AIB) | 6| brp query, (X, X,):
Y =A ®F(K,,B) Y; |Y, = PRP.QUERY(A |B) X, = X, & F(K,, X))
) !’ ’ ! —— ' s
hel =404 retum i & 1 A®4 X5 :=X; ® F(K3, X5)
* Inatrue PRP, return X, || X;

PrlY, @Y == A@ A']is
negligible

A

Y4||Y, = PRP.QUERY(A|B)
Y{||Y; = PrRP.QUERY(A'||B)
return Y; @ Yl! ==A@A

<

LF

prp-real

K1l « {0,122

PRP.QUERY(X, [1X1):

X;=X; ® F(K;,X3)
return X, | X;

However, a 3+ round Feistel cipher is fine!

A

Y,||Y, = PRP.QUERY(A||B)
Y{||Y; = PRP.QUERY(A'||B)
return Y; @ Y1, ==AQA

F
’Cprpfreal

Ki||Ky K5 « {0, 1

PRP.QUERY (X [1X1):
X, = X, @ F(Ky, X;)
X5 :=X; ® F(K;, X;)
X, =X, ® F(K3,X3)
return X;|| X,

However, a 3+ round Feistel cipher is fine!

* Luby and Rackoff proved that
a 3-round Feistel cipher is
indistinguishable from a
pseudorandom
permutation.®

* Can we also prove it using
our provable security
framework?

Ahttps://appliedcryptography.page/papers/
luby- rackoff.pdf

F
Lprpfreal

K |IK,|IK5 « {0, 1}3/1

PRP.QUERY[(X [X7):

X5 =X ® F(Ky, X))
X3 =X, @ F(Ky,X3)
X, =X, ® F(K3,X3)
return Xz || X,

[

F
£ prp-rand

Le=[]
PRP.QUERY(X):
if L[X] undefined:
Y« {0,1}" \ 'y
y=yu{Y}
L[X]=Y
return L[X]

https://appliedcryptography.page/papers/luby-rackoff.pdf
https://appliedcryptography.page/papers/luby-rackoff.pdf

The “bad event” proof technique

Let £, and £, be libraries that each include a boolean variable named bad, and assume that
after bad is set to true it remains true forever. We say that the bad event is triggered if the

library ever sets bad := true.

If £, and £, have identical source code, except for statements reachable only when bad :=
true, then:

|Pr[A o £, = true| — Pr[4 ¢ £, = true]| < Pr[A ¢ £, TRIGGER(bad)]

The “bad event” proof technique
Reminder

* A's advantage is bounded by Pr[A ¢ £,;TRIGGER(bad)].
* Practical application:

* Define a sequence of hybrid libraries.
* Identify “bad events” between consecutive hybrids.
* Show these events occur with negligible probability.

* Enables us to focus on analyzing specific failure cases rather than full behavior.

Applied Cryptography - American University of Beirut 51/72

The “end-of-time” strategy for bad events

* Sometimes analyzing bad events can be complex, especially when values are
chosen by the adversary.
* The end-of-time strategy:
1. Postpone all bad-event logic to the end of the library execution.
2. Collect information during normal execution.
3. Check for bad events only at the very end.
* Advantages:
 Simplifies analysis by separating normal behavior from bad-event checking.
* Makes it easier to bound the probability of bad events.
* Particularly useful for complex cryptographic proofs.

Applied Cryptography - American University of Beirut

52/72

However, a 3+ round Feistel cipher is fine!

* Luby and Rackoff proved that
a 3-round Feistel cipher is
indistinguishable from a
pseudorandom
permutation.®

* Can we also prove it using
our provable security
framework?

* Yes, with the bad events
proof technique!

Anhttps://appliedcryptography.page/papers/
luby-rackoff.pdf

F
Cprpfreal

K |IK,|IK;5 « {0, 1}3}“

PRP.QUERY(X(|1 X7):

X5 =X ® F(Ky, X))
X3 =X, @ F(Ky,X3)
X4 =X, @ F(K3,X3)
return Xz || X,

2

F
£ prp-rand

Le=[]
PRP.QUERY(X):
if L[X] undefined:
Y« {0,1}" \ y
y=yu{Y}
L[X]=Y
return L[X]

https://appliedcryptography.page/papers/luby-rackoff.pdf
https://appliedcryptography.page/papers/luby-rackoff.pdf

Proof of security for 3-round Feistel cipher
Step 1

L[F

prp-real

Ky ||K,|IK5 « {0, 1}

« Westartat £F PRP.QUERY(X, [X):

prp-real* X, = X, @ F(K, X,)

X3 =X ® F(K3,X5)
Xy =X, ® F(K3,X3)
return X;|| X,

Applied Cryptography - American University of Beirut

54/72

Proof of security for 3-round Feistel cipher

* We add a cache L[] so that each

distinct output is computed only
once.

F
[’prp—real

KK K5 « {0, 1}311

PRP.QUERY[(X, X7):
if L[X,]1X;] undefined:
X; =X, @ F(Ky,X,)
X3 =X ® F(K3,X;)
X, =X, ® F(K3,X3)
LIXolIX1] = X;]1X4
return L[X, [1X;]

Proof of security for 3-round Feistel cipher

* We add additional sub-cache L;[-] for
each F(K;, -)
* Since we already assume F to be a

secure PRF, we can replace it with the
ideal PRF and remove K.

F
Lprp—real

PRP.QUERY (X[X7):
if L[X,||X;] undefined:
if L;[X;] undefined:
Ly[X] « {0, 1}*
X5 = Xo @ Lyi[X4]
if L,[X,] undefined:
Ly[X;] « {0, 1}/l
X3 =X; @ Ly[X;]
if L;[X5] undefined:
L3[X;] « {8, 1}*
X, =X, @ L;[X5]
LXo[1X] = X5]1 X,
return L[X,|X;]

Proof of security for 3-round Feistel cipher

* We expect X, and X; to never repeat.
So, we can trigger the bad event if
they do.

* Later, we must show that the bad
event's probability is negligible.

F
Lprp—real

PRP.QUERY (X |1 X7):
if L[X,]1X;] undefined:
if L;[X;] undefined:
Ly[X] « {0, 1}*
X5 =Xo @ Ly[X1]
if L,[X;] defined: bad := true
Ly[X,] « {0,1}*
X3 =X; @ L,[X;]
if L;[X;] defined: bad := true
Ly[X;] « {0, 1}*
X, =X, @ L3[X;]
L[Xo[1X1] = X5 X,4
return L[X,|X;]

Proof of security for 3-round Feistel cipher

* Instead of sampling L,[X,] uniformly
and then computing X;, we can
sample X5 uniformly and compute
Ly[X,].

* Same for L;[X;] and X,.

F
Lprp—real

PRP.QUERY (X |1 X7):

if L[X,]1X;] undefined:
if L, [X;] undefined:
Ly[X] « {8, 11*
X5 =X @ Ly1[X1]
if L,[X;] defined: bad := true
X3 <« {0’ 1}1
L[X] =X 0 X,
if L;[X;] defined: bad := true
X, «{0,1}4
Li[X3] =X, 0 X,
LXolIX1] = X;5(1 X4
return L[X,|X;]

Proof of security for 3-round Feistel cipher

* We can move the sampling steps to
the top since they're no longer
dependent on other variables.

* Note how nothing after

L[X,|X;] := X;| X, affects what the
adversary sees!

F
Lprp—real

PRP.QUERY (X |1 X7):
if L[X,]1X;] undefined:
X; « {0,1}
X, « {0, 1}*
L[X0||X1] = X5 X,
if L;[X;] undefined:
Li[X7] « {0, 1}/l
X; = Xo @ Ly[X1]
if L,[X,] defined: bad := true
LX) =X © X,
if L;[X3] defined: bad := true
L3[X3] = X4 ® X,
return L[X,|X;]

Proof of security for 3-round Feistel cipher

‘Cgrp-real

PRP.QUERY (X, || X7):

if L[X,|1X;] undefined:
L[Xo[1X,] = {0, 1

* We can move the sampling steps to X = XU X)X}
the top since they're no longer return L[Xo[1X;]
dependent on other variables. END OF TIME():

. foreach X,||X; € X :
* Note how nothing after
g XX, = LIXolXi]

L[X,[1X:] := X3 X, affects what the if L, [X,] undefined:

adversary sees! Ly[X,] « {8, 1}*

] X =X ® Li[X,]
* So, we can move all bad-event logic to if L,[X,] defined: bad «= true
2142 . =

the end of time, without changing LX) =X X,

the bad event's overall probability. if L3[X;] defined: bad = true
LiX:] =X, © X,

Proof of security for 3-round Feistel cipher

* We need to analyze the probability of

the bad event happening.

* Let's say the adversary makes q

queries.

The bad event happens if:

* X, value collides with previous X,.
° X; value collides with previous Xj.

Reca“. XZ - XO @Ll [Xl] Where Ll [Xl]

is chosen randomly.

Applied Cryptography -

American University of Beirut

»CIF

prp-real

PRP.QUERY (X, || X7):

if L[X,|1X;] undefined:

L[Xo[1X,] = {0, 1
X =2 U {XollXy}
return L[X, || X;]

END OF TIME():
foreach X,|X; € X :
X;(X4 = L[Xo X311
if L;[X;] undefined:
Li[X;] « {0, 1}1
X; =Xo ® L1[X]

if L,[X,] defined: bad := true

L[X] =X ® X,

if L3[X3] defined: bad := true

Li[X3] = X, © X,

61/72

Proof of security for 3-round Feistel cipher

L[F

prp-real

PRP.QUERY (X[X7):
if L[X,|1X;] undefined:

* So, we need to analyze when X, collisions LIX,|IX,] += {0, 1P
occur. X=X U X)Xy}
. L[X,|1X;
* If (Xo,X;) and (X}, X]) are two different retum HXol)
inputs END OF TIME():
for each X,||X; € X :
* A collision happens when X, = XJ: X311X, = LIXo)X:]
if L;[X;] undefined:
Xo ® Ly[X;] = X & Ly[X]] LX) « (0.7
Xp =X @ Li[Xi]
- IfX; # X], then L, [X;] and L, [X]] are Lol ;] defined: bad := trve

LX) =X 0X
if L3[X3] defined: bad := true
* The probability of this specific collision is 2=% LilX] =X X,

independent random values

Applied Cryptography - American University of Beirut

Proof of security for 3-round Feistel cipher

Lgrp-real
PRP.QUERY (X, [|1X1):
if L[X,||X;1] undefined:

LIXol1X,] = {0, 1%
X=X U{X,|I X}

* For q queries, we have at most q(q — 1)/2 pairs etum LXo]]

of queries
.. . END OF TIME():
* Prob. of any X, collision across q queries: foreach X,[X, € X :
qlq - 1)/@2 2% ~ /2! XllXs = LIXol]

if L1[X;] undefined:
Li[X] « {0,2}*
X5 =X, @ L[X]

* Similarly for X; values: the probability of any
X; collision is at most g2/24+1.

* Total probability of bad event: at most ¢%/2* if L,[X;] defined: bad = true
. . e .. LX) =X X
* With 4 > log q, this probability is negligible. if L,[X;] defined: bad := true

Li[X;5] = X, © X,

Applied Cryptography - American University of Beirut

Proof of security for 3-round Feistel cipher

* By the bad event technique, the advantage of
any adversary is at most g2/2*4.

* Without bad events, our last hybrid samples
each response randomly.

* Since the sampling logic is all that remains
visible to the adversary, this is equivalent to
the final simplified library.

* Thisis indistinguishable from a truly random
permutation for g < 242 queries.

* (The birthday bound tells us that's when
collisions become likely)

Applied Cryptography - American University of Beirut

Lgrp-real

PRP.QUERY (X[X7):

if L[X,|1X;] undefined:
LIXo|1X,] = {0, 17
X=X U{Xo| X1}
return L[X, X;]

END OF TIME():
for each X,|X; € X :
X3[|X, = LXo[1X:]
if L;[X;] undefined:
Li[X;] « {0,1}4
X, =X, ® Lyi[X1]
if L,[X,] defined: bad := true
LIX] =X 0 X
if L3[X3] defined: bad := true
L3[X3] = X, ® X,

/72

Proof of security for 3-round Feistel cipher

* Rest of the transition steps are trivial.
L]

»CIF

prp-real

PRP.QUERY(X(|| X7):

if L[X, |1 X;] undefined:

LIXol1X,] = {0, 1
return L[X, X;]

2

F
‘Cprp-rand

L:=[]

PRP.QUERY(X):

if L[X] undefined:
Y« {0,1}" \ y
y=yui{Y}
L[X]=Y

return L[X]

DES: Feistel in practice

* Data Encryption Standard (DES) is a
classic real-world implementation of
the Feistel structure

* Properties:

* 16 Feistel rounds.

* 56-bit key (64 bits with parity).
° 64-bit block size.

° Standardized in 1977.

* Problem: By the 1990s, 56-bit keys
became too small for security.

Applied Cryptography - American University of Beirut

* Triple DES (3DES) replaced it:

° Uses three DES operations in
sequence.

* C = Ex3(Dg2(Ex1(P)))
* Effectively doubles the key length.
* Compatible with legacy DES when
K1 =K2=K3
* 3DES still used in legacy systems, but
largely replaced by AES for
performance reasons.

* Lesson: Feistel structure made it
possible to adapt DES rather than
abandon it.

66 /72

EFF's “Deep Crack”

* In 1998, the Electronic Frontier Foundation
built a special-purpose machine called “Deep
Crack"®

* Cost: Only $250,000 (far less than the NSA
budget!)

* Purpose: Prove that 56-bit DES keys were
insufficient.

A'm not responsible for any readings into that name.

EFF's “Deep Crack”

Applied Cryptography - American University of Beirut 67/72

EFF's “Deep Crack”

* July 1998: Deep Crack broke a DES challenge in
just 56 hours.

* Message revealed: “It's time for those 128-,
192-, and 256-bit keys."
* Impact:

° Publicly demonstrated DES was obsolete.
° Accelerated adoption of AES.
° Made “it's theoretically breakable” a practical

rea[ity. Paul Kocher. He's still active in
. . . cryptography today, insanely productive
* Priceless reaction from governme nt officials! research career, many crazy attacks

Applied Cryptography - American University of Beirut 68/ 72

AES: a good example of a PRP

AES is the most widely used PRP in
the world.

It works on fixed-size blocks: 128 bits.
Key sizes: 128,192, or 256 bits.

Each AES key defines a specific

permutation over the space of all
128-bit values.

For each key, AES maps each possible
128-bit input to exactly one 128-bit
output.

Applied Cryptography - American University of Beirut

Different keys create different
permutations.
AES is efficiently invertible:

* Dec(K,Enc(K,M)) =M
AES is believed to be computationally
indistinguishable from a random
permutation.

Has withstood extensive
cryptanalysis for over 20 years.

69 /72

AES structure

* Internal structure:
substitution-permutation network
with multiple rounds.

° SubBytes: non-linear substitution
* ShiftRows: transposition

* MixColumns: mixing operation

¢ AddRoundKey: XOR with round key

@Check out this amazing interactive animation of AES's internal structure:
https://formaestudio.com/rijndaelinspector/archivos/Rijndael_

Animation_v4_eng-html5.html

Applied Cryptography - American University of Beirut

Plaintext (128 bits)

Round Key 0

o \
Rgund 10| AddRoundKey Round Keys 1-9

i No MixColumns
! infinal round

AddRoundKey [« Round Key 10

Ciphertext (128 bits)

70 /72

https://formaestudio.com/rijndaelinspector/archivos/Rijndael_Animation_v4_eng-html5.html
https://formaestudio.com/rijndaelinspector/archivos/Rijndael_Animation_v4_eng-html5.html

AES: security and attacks over time

* AES has been heavily analyzed for
over 20 years.

* Best attacks against full AES have
gradually improved:

° 2011: Biclique attack (Bogdanov et
al.) reduced complexity to 21251 for
AES-128.

* Various side-channel attacks
developed (power analysis, cache
timing).®

* Advances in meet-in-the-middle
and related-key techniques.

AThis is the main way to attack AES in practice. Side-channel attacks will
be discussed in more depth later in the course.

Applied Cryptography - American University of Beirut

* Despite these advances:

* No practical attacks on full AES-128.

* Best attacks still require ~ 2126
operations.

° At this complexity, attacks remain
purely theoretical.

* Would require resources far
exceeding global computing power.

* Even quantum computers offer only
modest advantage (Grover's
algorithm reduces security to 264
operations).®

@More on quantum computers and how they affect cryptography later in
the course.

71/ 72

2O\ AMERICAN
) UNIVERSITY

Applied Cryptography
CMPS 297AD/396AI
Fall 2025

Part 1: Provable Security
1.4: Pseudorandomness

Nadim Kobeissi
https://appliedcryptography.page

https://appliedcryptography.page

	Pseudorandom Generators
	Pseudorandom Functions
	Pseudorandom Permutations

