
Applied Cryptography
CMPS 297AD/396AI
Fall 2025
Part 1: Provable Security

1.3: Provable Security
& Computational Cryptography

Nadim Kobeissi
https://appliedcryptography.page

https://appliedcryptography.page

Section 1

Provable Security

Last time, we defined subroutines

𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑦
attack(𝑀): // adversary chooses𝑀
𝐾 ↞ {0, 1}𝑛 // victim samples𝐾
𝐶 ≔ Enc(𝐾,𝑀) // victim encrypts

return 𝐶 // adversary sees𝐶

𝑀

𝐶

Applied Cryptography - American University of Beirut 3/53

Subroutines

• “Victim” chooses their key.
• Adversary chooses the message and
receives the ciphertext.

• We say that the adversary has access
to an encryption oracle.

victim:
𝐾 � {0, 1}𝑛

Enc
adversary

𝐾

𝑀

𝐶

Source: The Joy of Cryptography

Applied Cryptography - American University of Beirut 4/53

Attack scenarios as libraries

• This is a library with two subroutines and a global
variable 𝐷.

• Victim holds a 6-sided die.
• The first line of the library represents an
initialization step.

• Attacker can call the subroutines at any time, and:
1. Make a guess about the current value of the die

and learn whether the guess was correct.
2. Instruct the victim to (privately) re-roll the die.

ℒdice-guess

𝐷 ↞ {1, 2, 3, 4, 5, 6}

guess(𝐺):
return 𝐷 == 𝐺
reroll(𝐺):
𝐷 ↞ {1, 2, 3, 4, 5, 6}

Applied Cryptography - American University of Beirut 5/53

One-time pad
From the adversary’s perspective...

Attack(𝑀):
𝐾 ↞ {0, 1}𝑛
𝐶 ≔ 𝐾 ⊕𝑀
return 𝐶

≊
(indistinguishable

from)

Junk(𝑀):
𝐶 ↞ {0, 1}𝑛
return 𝐶

Applied Cryptography - American University of Beirut 6/53

“Real or random?”

Applied Cryptography - American University of Beirut 7/53

Programs and libraries

• 𝒜 is a program that calls library
ℒdice-guess.

• Programs can only see the output of
function calls to libraries.
• Programs can’t read the values of
library variables,

• Programs can’t measure how long it
took to run a subroutine,

• Etc.

𝒜

if guess(6):
return true

reroll()
return guess(6)

⋄

ℒdice-guess

𝐷 ↞ {1, 2, 3, 4, 5, 6}

guess(𝐺):
return 𝐷 == 𝐺
reroll(𝐺):
𝐷 ↞ {1, 2, 3, 4, 5, 6}

Applied Cryptography - American University of Beirut 8/53

When are libraries interchangeable?

• Libraries are interchangeable when they:
• Have the same interface,
• Pr[𝒜 ⋄ ℒ1 ⇒ true] = Pr[𝒜 ⋄ ℒ2 ⇒ true]

• i.e. when their usage and output is
indistinguishable from the adversary’s
perspective when they are paired with𝒜.

• A lot of the time,𝒜’s mission is to try to
distinguish between ℒ1 and ℒ2.

ℒotp-real

otp.enc(𝑀):
𝐾 ↞ {0, 1}𝑛
𝐶 ≔ 𝐾 ⊕𝑀
return 𝐶

≡

ℒotp-rand

otp.enc(𝑀):
𝑅 ↞ {0, 1}𝑛
return 𝑅

Applied Cryptography - American University of Beirut 9/53

When are libraries interchangeable?

• Are these libraries interchangeable?
• Yes! Their only difference happens in
unreachable lines of code.

ℒa

foo(𝑀):
𝑋 ↞ {1,… , 𝑛}
if 𝑋 < 0:
return 0𝑛

?
≡

ℒb

foo(𝑀):
𝑋 ↞ {1,… , 𝑛}
if 𝑋 < 0:
return 01

Applied Cryptography - American University of Beirut 10/53

When are libraries interchangeable?

• Are these libraries interchangeable?
• Yes! Their only difference is the value
they assign to a variable that is never
actually used.

ℒa

foo(𝐴, 𝐵):
𝑌 ↞ {0, 1}𝑛
𝐶 ≔ bar(𝐴)
return 𝑌
bar(𝑀):
𝑋 ↞ {0, 1}𝑛
return 𝑋

?
≡

ℒb

foo(𝐴, 𝐵):
𝑌 ↞ {0, 1}𝑛
𝐶 ≔ bar(𝐵)
return 𝑌
bar(𝑀):
𝑋 ↞ {0, 1}𝑛
return 𝑋

Applied Cryptography - American University of Beirut 11/53

When are libraries interchangeable?

• Are these libraries interchangeable?
• ‖ denotes string concatenation.

• Po‖tato = Potato
• Yes! Outputting the concatentaion
two randomly sampled uniform
strings of lengths 𝑛 and𝑚 is the
same as outputting a single random
string of length 𝑛 + 𝑚.

ℒa

sample():
𝑋 ↞ {0, 1}𝑛
𝑌 ↞ {0, 1}𝑚
return 𝑋‖𝑌

?
≡

ℒb

sample():
𝑅 ↞ {0, 1}𝑛+𝑚
return 𝑅

Applied Cryptography - American University of Beirut 12/53

When are libraries interchangeable?

• Are these libraries interchangeable?
• No! The first library uses the same 𝐾
for all subsequent encryptions, which
breaks OTP security.
• Recall that OTP requires keys to be
only used once (hence the name).

ℒa

𝐾 ↞ {0, 1}𝑛

otp.enc(𝑀):
𝐶 ≔ 𝐾 ⊕𝑀
return 𝐶

?
≡

ℒb

otp.enc(𝑀):
𝐶 ↞ {0, 1}𝑛
return 𝐶

Applied Cryptography - American University of Beirut 13/53

How do we show the distinguisher?

• What happens if we call
𝒜⋄ℒa multiple times?
• We’ll get the same output
≡ 𝐾 each time!

• Pr[𝒜 ⋄ ℒa ⇒ true] = 1,

𝒜

𝐶1 ≔ otp.enc(0𝑛)
𝐶2 ≔ otp.enc(0𝑛)
return 𝐶1 == 𝐶2

⋄

ℒa

𝐾 ↞ {0, 1}𝑛

otp.enc(𝑀):
𝐶 ≔ 𝐾 ⊕𝑀
return 𝐶

Applied Cryptography - American University of Beirut 14/53

How do we show the distinguisher?

• What happens if we call
𝒜⋄ℒa multiple times?
• We’ll get the same output
≡ 𝐾 each time!

• Pr[𝒜 ⋄ ℒa ⇒ true] = 1,
• Pr[𝒜 ⋄ ℒb ⇒ true] = 1

2𝑛
.

𝒜

𝐶1 ≔ otp.enc(0𝑛)
𝐶2 ≔ otp.enc(0𝑛)
return 𝐶1 == 𝐶2

⋄

ℒb

otp.enc(𝑀):
𝐶 ↞ {0, 1}𝑛
return 𝐶

Applied Cryptography - American University of Beirut 15/53

OTP: why key re-use is bad

𝐶𝑖 ⊕𝐶𝑗 = (𝐾 ⊕𝑀𝑖) ⊕ (𝐾 ⊕𝑀𝑗)
= 𝐾 ⊕ 𝐾 ⊕𝑀𝑖 ⊕𝑀𝑗

= 0𝑛 ⊕𝑀𝑖 ⊕𝑀𝑗

= 𝑀𝑖 ⊕𝑀𝑗

• Pr[𝒜 ⋄ ℒa ⇒ true] = 1a

aInteractive demo:
https://www.douglas.stebila.ca/teaching/visual-one-time-pad/

𝒜

𝑀1 ↞ {0, 1}𝑛
𝑀2 ↞ {0, 1}𝑛
𝐶1 ≔ otp.enc(𝑀1)
𝐶2 ≔ otp.enc(𝑀2)
return 𝐶1 ⊕𝐶2 == 𝑀1 ⊕𝑀2

⋄

ℒa

𝐾 ↞ {0, 1}𝑛

otp.enc(𝑀):
𝐶 ≔ 𝐾 ⊕𝑀
return 𝐶

Applied Cryptography - American University of Beirut 16/53

https://www.douglas.stebila.ca/teaching/visual-one-time-pad/

Proving two libraries are interchangeable

• Are these libraries interchangeable?
• Let’s find out!
• Goal: transform ℒxor-samp-1 to
ℒxor-samp-2, proving that each
transformation step does not effect
any change on calling programs.

ℒxor-samp-1

sample(𝑀):
𝑋 ↞ {0, 1}𝑛
𝑌 ≔ 𝑋 ⊕𝑀
return (𝑋, 𝑌)

?
≡

ℒxor-samp-2

sample(𝑀):
𝑌 ↞ {0, 1}𝑛
𝑋 ≔ 𝑌 ⊕𝑀
return (𝑋, 𝑌)

Applied Cryptography - American University of Beirut 17/53

Proving two libraries are interchangeable
Step 1

• We start at ℒxor-samp-1.

ℒxor-samp-1

sample(𝑀):
𝑋 ↞ {0, 1}𝑛
𝑌 ≔ 𝑋 ⊕𝑀
return (𝑋, 𝑌)

Applied Cryptography - American University of Beirut 18/53

Proving two libraries are interchangeable
Step 2

• Let’s add a new variable 𝑋 ′.
• Note that 𝑋 = 𝑋 ′:

• 𝑋 ′ = 𝑌 ⊕𝑀 = (𝑋 ⊕𝑀) ⊕𝑀 = 𝑋 .

ℒhyb-1

sample(𝑀):
𝑋 ↞ {0, 1}𝑛
𝑌 ≔ 𝑋 ⊕𝑀
𝑋 ′ ≔ 𝑌 ⊕𝑀𝑋 ′ ≔ 𝑌 ⊕𝑀𝑋 ′ ≔ 𝑌 ⊕𝑀𝑋 ′ ≔ 𝑌 ⊕𝑀𝑋 ′ ≔ 𝑌 ⊕𝑀𝑋 ′ ≔ 𝑌 ⊕𝑀𝑋 ′ ≔ 𝑌 ⊕𝑀𝑋 ′ ≔ 𝑌 ⊕𝑀𝑋 ′ ≔ 𝑌 ⊕𝑀𝑋 ′ ≔ 𝑌 ⊕𝑀𝑋 ′ ≔ 𝑌 ⊕𝑀𝑋 ′ ≔ 𝑌 ⊕𝑀𝑋 ′ ≔ 𝑌 ⊕𝑀𝑋 ′ ≔ 𝑌 ⊕𝑀𝑋 ′ ≔ 𝑌 ⊕𝑀𝑋 ′ ≔ 𝑌 ⊕𝑀𝑋 ′ ≔ 𝑌 ⊕𝑀
return (𝑋, 𝑌)

Applied Cryptography - American University of Beirut 19/53

Proving two libraries are interchangeable
Step 3

• So, we can return (𝑋 ′, 𝑌) without any
change on the library’s effect.
• 𝑋 ′ = 𝑌 ⊕𝑀 = (𝑋 ⊕𝑀) ⊕𝑀 = 𝑋 .

ℒhyb-2

sample(𝑀):
𝑋 ↞ {0, 1}𝑛
𝑌 ≔ 𝑋 ⊕𝑀
𝑋 ′ ≔ 𝑌 ⊕𝑀
return (𝑋 ′, 𝑌)return (𝑋 ′, 𝑌)return (𝑋 ′, 𝑌)return (𝑋 ′, 𝑌)return (𝑋 ′, 𝑌)return (𝑋 ′, 𝑌)return (𝑋 ′, 𝑌)return (𝑋 ′, 𝑌)return (𝑋 ′, 𝑌)return (𝑋 ′, 𝑌)return (𝑋 ′, 𝑌)return (𝑋 ′, 𝑌)return (𝑋 ′, 𝑌)return (𝑋 ′, 𝑌)return (𝑋 ′, 𝑌)return (𝑋 ′, 𝑌)return (𝑋 ′, 𝑌)

Applied Cryptography - American University of Beirut 20/53

Proving two libraries are interchangeable
Step 4

• The first two lines of sample(𝑀) are
the same as otp.enc(𝑀), so we link it
and use it instead.

ℒhyb-3-4

sample(𝑀):
𝑌 ≔ otp.enc(𝑀)𝑌 ≔ otp.enc(𝑀)𝑌 ≔ otp.enc(𝑀)𝑌 ≔ otp.enc(𝑀)𝑌 ≔ otp.enc(𝑀)𝑌 ≔ otp.enc(𝑀)𝑌 ≔ otp.enc(𝑀)𝑌 ≔ otp.enc(𝑀)𝑌 ≔ otp.enc(𝑀)𝑌 ≔ otp.enc(𝑀)𝑌 ≔ otp.enc(𝑀)𝑌 ≔ otp.enc(𝑀)𝑌 ≔ otp.enc(𝑀)𝑌 ≔ otp.enc(𝑀)𝑌 ≔ otp.enc(𝑀)𝑌 ≔ otp.enc(𝑀)𝑌 ≔ otp.enc(𝑀)
𝑋 ′ ≔ 𝑌 ⊕𝑀
return (𝑋 ′, 𝑌)

⋄

ℒotp-real

otp.enc(𝑀):
𝐾 ↞ {0, 1}𝑛
𝐶 ≔ 𝐾 ⊕𝑀
return 𝐶

Applied Cryptography - American University of Beirut 21/53

Proving two libraries are interchangeable
Step 5

• The first two lines of sample(𝑀) are
the same as otp.enc(𝑀), so we link it
and use it instead.

• Recall that ℒotp-real ≡ ℒotp-rand!
• So, we replace ℒotp-real with ℒotp-rand.

ℒhyb-3-4

sample(𝑀):
𝑌 ≔ otp.enc(𝑀)
𝑋 ′ ≔ 𝑌 ⊕𝑀
return (𝑋 ′, 𝑌)

⋄

ℒotp-rand

otp.enc(𝑀):
𝑅 ↞ {0, 1}𝑛
return 𝑅

Applied Cryptography - American University of Beirut 22/53

Proving two libraries are interchangeable
Step 6

• The first two lines of sample(𝑀) are
the same as otp.enc(𝑀), so we link it
and use it instead.

• Recall that ℒotp-real ≡ ℒotp-rand!
• So, we replace ℒotp-real with ℒotp-rand.
• We inline ℒotp-rand back into our main
library.

ℒhyb-5

sample(𝑀):
𝑌 ↞ {0, 1}𝑛↞ {0, 1}𝑛↞ {0, 1}𝑛↞ {0, 1}𝑛↞ {0, 1}𝑛↞ {0, 1}𝑛↞ {0, 1}𝑛↞ {0, 1}𝑛↞ {0, 1}𝑛↞ {0, 1}𝑛↞ {0, 1}𝑛↞ {0, 1}𝑛↞ {0, 1}𝑛↞ {0, 1}𝑛↞ {0, 1}𝑛↞ {0, 1}𝑛↞ {0, 1}𝑛
𝑋 ′ ≔ 𝑌 ⊕𝑀
return (𝑋 ′, 𝑌)

Applied Cryptography - American University of Beirut 23/53

Proving two libraries are interchangeable
Step 7

• The first two lines of sample(𝑀) are
the same as otp.enc(𝑀), so we link it
and use it instead.

• Recall that ℒotp-real ≡ ℒotp-rand!
• So, we replace ℒotp-real with ℒotp-rand.
• We inline ℒotp-rand back into our main
library.

• Finally, we rename 𝑋 ′ to 𝑋 .

ℒhyb-6

sample(𝑀):
𝑌 ↞ {0, 1}𝑛
𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 ≔ 𝑌 ⊕𝑀
return (𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋, 𝑌)

Applied Cryptography - American University of Beirut 24/53

Proving two libraries are interchangeable
Result

• Interchangeable!
• Note how we had to show
equivalence at each step.

ℒhyb-6

sample(𝑀):
𝑌 ↞ {0, 1}𝑛
𝑋 ≔ 𝑌 ⊕𝑀
return (𝑋, 𝑌)

≡

ℒxor-samp-2

sample(𝑀):
𝑌 ↞ {0, 1}𝑛
𝑋 ≔ 𝑌 ⊕𝑀
return (𝑋, 𝑌)

Applied Cryptography - American University of Beirut 25/53

Cryptographic primitives

• Specific algorithms like OTP are important in cryptography, but OTP is just one
instance of an encryption scheme.

• In cryptography, useful abstractions like “encryption scheme” are called
primitives.

• Three things are important when defining a cryptographic primitive:
1. Syntax: The basic raw interface - algorithms, inputs/outputs and their types.
2. Correctness: Basic functionality without adversaries - e.g., “decryption should be

the inverse of encryption”.
3. Security: Guarantees that hold in specific attack scenarios with adversaries.

Applied Cryptography - American University of Beirut 26/53

Cryptographic primitives
Σ: a symmetric-key encryption scheme

• Σ.KeyGen() = 𝐾
• Input: none
• Output: key 𝐾 ∈ Σ.𝒦 (the “key space”).

• Σ.Enc(𝐾,𝑀) = 𝐶
• Input: key 𝐾 ∈ Σ.𝒦, plaintext𝑀 ∈ Σ.ℳ (the “message space”).
• Output: ciphertext 𝐶 ∈ Σ.𝒞.

• Σ.Dec(𝐾, 𝐶) = 𝑀
• Input: key 𝐾 ∈ Σ.𝒦, ciphertext 𝐶 ∈ Σ.𝒞 (the “ciphertext space”).
• Output: plaintext𝑀 ∈ Σ.ℳ.

Applied Cryptography - American University of Beirut 27/53

Correctness of a SKE

Correctness for SKE

An SKE scheme Σ is correct if encryption
and decryption are inverses, in the follow-
ing sense:

Pr[Σ.Dec(𝐾, Σ.Enc(𝐾,𝑀)) = 𝑀] = 1

for all𝑀 ∈ Σ.ℳ and 𝐾 ∈ Σ.𝒦.

• The definition involves a probability
because Σ.Enc may be a randomized
algorithm.

• This means that decryption should
always recover the original message.

• Even if encryption adds randomness,
decryption must be deterministic for
each key-ciphertext pair.

Applied Cryptography - American University of Beirut 28/53

One-time secrecy of a SKE

One-time Secrecy for SKE

An SKE scheme Σ has one-time secrecy if
the following libraries are interchangeable:

ℒΣ
ots-real

ots.enc(𝑀):
𝐾 ↞ Σ.𝒦
𝐶 ≔ Σ.Enc(𝐾,𝑀)
return 𝐶

≡

ℒΣ
ots-rand

ots.enc(𝑀):
𝐶 ↞ Σ.𝒞
return 𝐶

An encryption scheme has one-time
secrecy if its ciphertexts are uniformly
distributed, when keys are sampled
uniformly, kept secret, and used for only
one encryption, and no matter how the
plaintexts are chosen.

Applied Cryptography - American University of Beirut 29/53

Reminder: AND (∧)

• Let’s replace⊕ with ∧. What would happen?
• Output no longer uniform!

A B A ∧ B
0 0 0
0 1 0
1 0 0
1 1 1

Table: Truth table for AND operation

Attack(𝑀):
𝐾 ↞ {0, 1}𝑛
𝐶 ≔ 𝐾 ∧𝑀
return 𝐶

Applied Cryptography - American University of Beirut 30/53

Creating a distinguisher program

• Can you write a distinguisher
program showing that these libraries
are not interchangeable?

•

𝒜

𝑀 ≔ 0𝑛

𝐶 ≔ ots.enc(𝑀)
return 𝐶 == 0𝑛

• Pr[𝐴 ⋄ ℒots-real ⇒ true] = 1
• Pr[𝐴 ⋄ ℒots-rand ⇒ true] = 1

2𝑛

ℒots-real

ots.enc(𝑀):
𝐾 ↞ {0, 1}𝑛
𝐶 ≔ 𝐾 ∧𝑀
return 𝐶

?
≡

ℒots-rand

ots.enc(𝑀):
𝐶 ↞ {0, 1}𝑛
return 𝐶

Applied Cryptography - American University of Beirut 31/53

Section 2

Computational Cryptography

Computational notions in cryptography

• Security definitions in theoretical cryptography can be too strict:
• Even attacks requiring a trillion years of computation.
• Even attacks with probability lower than winning the lottery 100 times.

• Modern provable security takes a more practical approach:
• We dismiss attacks with “astronomically” high computational cost.
• We dismiss attacks with “astronomically” tiny success probability.

• Instead of “no attack can succeed, not even in principle”,
• We prove: “every attack has either astronomically high cost or astronomically
small success probability”.

Applied Cryptography - American University of Beirut 33/53

The concrete approach to provable security

• In the concrete approach to provable security, we aim to be as quantitative as
possible about security claims.

• We rarely say definitively that a cryptographic algorithm “is secure”, as we did
with OTP.

• Instead, we use statements like:
• “Any attack that expends at most 280 effort can succeed with probability no better

than 2−64.”
• It is up to the user to judge whether this quantitative level of security is
acceptable based on their use-case.

• This gives users a concrete basis for security decisions.

Applied Cryptography - American University of Beirut 34/53

Monetary cost of huge computations

• One way to think about huge computations is their monetary cost.
• The table below shows roughly howmuch a computation involving 2𝑛 CPU cycles
would cost on the cheapest available Amazon EC2 cloud computing service:

Clock cycles Approx cost (USD) Point of reference
250 $3.50 cup of coffee
255 $100 dinner at a high-end restaurant
265 $130,000 apartment in Achrafieh
275 $130 million budget of one of the Harry Potter movies
285 $140 billion GDP of Hungary
292 $20 trillion GDP of the United States
299 $2 quadrillion all of human economic activity since 300,000 BCE
2128 a lot! a billion human civilizations’ worth of effort

Applied Cryptography - American University of Beirut 35/53

Understanding tiny probabilities

• Let’s put extremely small probabilities in perspective:
• In 2009, Patricia Demauro rolled dice 154 consecutive times without getting a 7 in
craps.

• Probability of this event: (30/36)154 ≈ 2−40.6
• Often cited as one of the most improbable documented events in gambling history.

• Other extremely unlikely gambling events:
• In 1943, a roulette wheel reportedly landed on red 32 consecutive times.
• Probability: (18/38)31 ≈ 2−33.4
• Winning the American Powerball lottery: 2−28.1
• Winning Powerball two consecutive weeks: 2−56.2

• These examples help us intuitively grasp what probabilities like 2−40 or 2−50
actually mean.

Applied Cryptography - American University of Beirut 36/53

Computational scale of Bitcoinmining

• Let’s consider cryptocurrencies based on proof-of-work, like Bitcoin.
• These systems incentivize users to perform truly obscene amounts of
computation.

• In Bitcoin’s proof-of-work mechanism:
• Users race to perform SHA-256 hash computations as fast as possible.
• The collective Bitcoin network has performed approximately 295 SHA-256 hashes in
total.

• In the last 12 months alone: approximately 293.6 hashes.
• Current market cap for Bitcoin: approximately 400 billion USD.

• This shows the enormous scale of computation that economic incentives can
support.

Applied Cryptography - American University of Beirut 37/53

The asymptotic approach to provable security

• The concrete approach gives practical guidance (e.g., key sizes) but requires
managing tedious quantitative details.

• The asymptotic approach:
• Makes qualitative, all-or-nothing statements
• Considers behavior as key size approaches infinity
• Hides tedious quantitative details

• Similar to asymptotic analysis using big-O notation.
• Example: Instead of calculating that an operation takes exactly 16𝑛2 + 24𝑛 + 74
steps, we can simply say it takes 𝑂(𝑛2) steps

Applied Cryptography - American University of Beirut 38/53

AES: An example of asymptotic security analysis

• The Advanced Encryption Standard
(AES) is a common symmetric-key
encryption algorithm.

• It comes in different variants:
AES-128, AES-192, AES-256.

• In asymptotic analysis, we’d say:
• AES is secure against all
polynomial-time adversaries.

• Any successful attack must take
exponential time in the key length.

• This hides the concrete details about
specific computational costs.

• Concrete security for AES-128:
• Best known attack: ≈ 2126.1
operations

• For AES-256:
• Best known attack: ≈ 2254.4
operations

• Far beyond capability of any
conceivable computation

• Asymptotic approach: Both are
“computationally secure”

Applied Cryptography - American University of Beirut 39/53

Polynomial running time

• In the asymptotic approach, we focus
only on adversaries that run in
polynomial time.

• The security parameter 𝜆 determines
the level of security:
• Usually the length of secret keys in
bits

• All algorithms have access to 𝜆 as a
global variable

• Example: AES-128 uses 𝜆 = 128,
AES-256 uses 𝜆 = 256. (“256-bit
security”)

Polynomial Running Time

An algorithm runs in polynomial time if
there is a polynomial 𝑝 such that the algo-
rithm takes at most 𝑂(𝑝(𝑛)) steps on in-
puts of length 𝑛.

Applied Cryptography - American University of Beirut 40/53

Negligible functions

Negligible Functions

A function 𝑓 is negligible if it approaches
zero faster than 1/𝑝(𝜆), for every polyno-
mial 𝑝. Formally:

• For every polynomial 𝑝, there exists
𝜆0 such that 𝑓(𝜆) < 1/𝑝(𝜆) for all
𝜆 > 𝜆0.

• For every polynomial 𝑝, we have
𝑝(𝜆) ∈ 𝑂(1/𝑓(𝜆)).

• You can probably ignore the
definition and just think about this
intuitively:

• In cryptography, we want attack
probabilities to be negligible in the
security parameter 𝜆.

• Negligible probability: essentially
zero for practical purposes when 𝜆 is
large enough.

Applied Cryptography - American University of Beirut 41/53

Birthday paradox

• In a classroom of 50 students, what’s the probability that at least two share a
birthday?
• 2%?
• 20%?
• 50%?
• 97%?

• Many people guess around 15-20%, but the actual probability is about 97%!
• This is counterintuitive becausewe’re not looking for a specific birthday - we’re
looking for anymatch among all possible pairs.

• With 50 students, we have (50
2
) = 1, 225 possible pairs to check!a

a(502) is a binomial coefficient. It means: “howmany ways can I choose two different items from a set of 50?”

Applied Cryptography - American University of Beirut 42/53

Birthday paradox

• With just 23 people, probability exceeds 50%
• Formula for 𝑛 people:

𝑃 = 1 − 365!
(365 − 𝑛)! ⋅ 365𝑛

• Implication: Finding collisions in a space of size 𝑁 happens with roughly√𝑁
samples.

• This is why many cryptographic systems need large output spaces!

Applied Cryptography - American University of Beirut 43/53

Birthday probabilities

• Many cryptographic algorithms fail if two
executions sample the same random value.

• General question: If we take 𝑞 independent
uniform samples from a set of 𝑁 items, what’s
the probability some value is chosen more
than once?

• This probability is called birthday(𝑞, 𝑁)

birthday(𝑞, 𝑁) = 1 −
𝑞−1
∏
𝑖=1

(1 − 𝑖
𝑁)

• Surprisingly high probability!
• With 𝑞 ≈ 1.2√𝑁 , probability
≈ 0.5

• For birthdays: only need 23
people for > 50% chance

Applied Cryptography - American University of Beirut 44/53

Indistinguishability in computational security

Indistinguishability

Letℒ1 andℒ2 be two librarieswith the same interface.
The advantage of a calling program𝒜 in distinguish-
ing ℒ1 and ℒ2 is:

||Pr[𝒜 ⋄ ℒ1 ⇒ true] − Pr[𝒜 ⋄ ℒ2 ⇒ true]||

ℒ1 ≊ℒ2, if every polynomial-time calling programhas
only negligible advantage in distinguishing them.

• Previously, libraries were
interchangeable when
probabilities were identical.

• Now, libraries are
indistinguishable when
probabilities are negligibly
close.

• Again: this is intuitive, no
need to stress about the
formal definition.

Applied Cryptography - American University of Beirut 45/53

The “bad event” proof technique
Definition

Bad Event Technique

Let ℒ1 and ℒ2 be libraries that each include a boolean variable named badbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbad, and assume that
after bad is set to true it remains true forever. We say that the bad event is triggered if the
library ever sets bad ^= true.

If ℒ1 and ℒ2 have identical source code, except for statements reachable only when bad ^=
true, then:

||Pr[𝒜 ⋄ ℒ1 ⇒ true] − Pr[𝒜 ⋄ ℒ2 ⇒ true]|| ≤ Pr[𝒜 ⋄ ℒ1trigger(bad)]

Applied Cryptography - American University of Beirut 46/53

The “bad event” proof technique
Key insights

• 𝒜’s advantage is bounded by Pr[𝒜 ⋄ ℒ1trigger(bad)].
• Practical application:

• Define a sequence of hybrid libraries.
• Identify “bad events” between consecutive hybrids.
• Show these events occur with negligible probability.

• Enables us to focus on analyzing specific failure cases rather than full behavior.

Applied Cryptography - American University of Beirut 47/53

The “bad event” proof technique
Example

• Are these libraries computationally
indistinguishable?

• Yes! Let’s prove it use the bad event
technique.

ℒ1

predict(𝑥):
𝑅 ↞ {0, 1}𝜆
return 𝑅 == 𝑋

?
≊

ℒ2

predict(𝑥):
return false

Applied Cryptography - American University of Beirut 48/53

The “bad event” proof technique
Example

• Are these libraries computationally
indistinguishable?

• Yes! Let’s prove it use the bad event
technique.

• Note: these libraries are
interchangeable with ℒ1 and ℒ2 (as
seen on next slide).

ℒ′
1

predict(𝑥):
𝑅 ↞ {0, 1}𝜆
if 𝑅 == 𝑋 :
bad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ true
return truetruetruetruetruetruetruetruetruetruetruetruetruetruetruetruetrue

return false

?
≊

ℒ′
2

predict(𝑥):
𝑅 ↞ {0, 1}𝜆
if 𝑅 == 𝑋 :
bad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ true
return falsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalse

return false

Applied Cryptography - American University of Beirut 49/53

The “bad event” proof technique
Just to be clear

ℒ1

predict(𝑥):
𝑅 ↞ {0, 1}𝜆
return 𝑅 == 𝑋

≡

ℒ′
1

predict(𝑥):
𝑅 ↞ {0, 1}𝜆
if 𝑅 == 𝑋 :
bad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ true
return truetruetruetruetruetruetruetruetruetruetruetruetruetruetruetruetrue

return false

?
≊

ℒ′
2

predict(𝑥):
𝑅 ↞ {0, 1}𝜆
if 𝑅 == 𝑋 :
bad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ true
return falsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalse

return false

≡

ℒ2

predict(𝑥):
return false

Applied Cryptography - American University of Beirut 50/53

The “bad event” proof technique
Example

• We need to analyze how likely it is that the bad event happens:
• The bad event occurs when 𝑅 == 𝑋 .
• Since 𝑅 is randomly chosen from a huge set, this match is
extremely unlikely.

• Even if an adversary makes many attempts, the chance of seeing
this bad event remains tiny.

• As we increase the security parameter 𝜆, the chance becomes
vanishingly small.

• Therefore, the libraries are computationally indistinguishable!
• For any𝒜, computationally speaking, we’d get the same
distribution of outputs.

ℒ′
1

predict(𝑥):
𝑅 ↞ {0, 1}𝜆
if 𝑅 == 𝑋 :
bad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ true
return truetruetruetruetruetruetruetruetruetruetruetruetruetruetruetruetrue

return false

?
≊

ℒ′
2

predict(𝑥):
𝑅 ↞ {0, 1}𝜆
if 𝑅 == 𝑋 :
bad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ truebad ≔ true
return falsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalsefalse

return false

Applied Cryptography - American University of Beirut 51/53

The “end-of-time” strategy for bad events

• Sometimes analyzing bad events can be complex, especially when values are
chosen by the adversary.

• The end-of-time strategy:
1. Postpone all bad-event logic to the end of the library execution.
2. Collect information during normal execution.
3. Check for bad events only at the very end.

• Advantages:
• Simplifies analysis by separating normal behavior from bad-event checking.
• Makes it easier to bound the probability of bad events.
• Particularly useful for complex cryptographic proofs.

• We’ll use this in the next topic!

Applied Cryptography - American University of Beirut 52/53

Applied Cryptography
CMPS 297AD/396AI
Fall 2025
Part 1: Provable Security

1.3: Provable Security
& Computational Cryptography

Nadim Kobeissi
https://appliedcryptography.page

https://appliedcryptography.page

	Provable Security
	Computational Cryptography

