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Defining cryptography

“The science of enabling secure and pri-
vate computation, communication, veri-
fication, and delegation in the presence
of untrusted parties, adversarial behavior,
and mutually distrustful participants.”

Applied Cryptography - American University of Beirut

le— O
— >
le— m
|—
— >
|— o

| >>>3 | | >>>3 | | >>>3 | | >>>3 I | >>>3 I | >>>3 I

l— <
l— O <—
le— T <]
l— < <—
l— O <—
le— C <]

| <<<3 | | <<<3 | | <<<3 | | <<<3 | | <<<3 | | <<<3 |

O -—
> a—
m ~g—
o -a—
> a—
O ~-—

Source: Serious Cryptography, 2nd Edition
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Defining cryptography

“The science of enabling secure and pri-
vate computation, communication, veri-
fication, and delegation in the presence
of untrusted parties, adversarial behavior,
and mutually distrustful participants.”
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Cryptography is everywhere

* Banking

* Buying stuff from the store

* Any digital payment system

* Messaging (WhatsApp, Signal,
iMessage, Telegram)

* Voice calls

* Government and military systems

* SSH

* VPN access

* Visiting most websites (HTTPS)
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Disk encryption

Cloud storage

Video conferencing
Unlocking your (newer) car
Identity card systems
Ticketing systems

DRM solutions

Private contact discovery
Cryptocurrencies

That iPhotos feature that detects
similar photos
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How it’'s made

Security Proofs &
Formal Verification
K Standard Development
Theoretical Cryptographers Organizations
Industry
Cryptography Stakeholders
Standards
Cryp!ographic Products with End Users
;\Igor;thmls Cryptography
rotocols Secure Implementations
Applied (Cryptography Libraries) Product
Cryptographic Designers Cryptographers | Designers
Organizations
Product Security
Analysts

T Legend Entities That Guide |
Cryptanalysts '
Actor / Role E’—H:I "Creates" « Governments H
* Media '
"Is chosen « Non-Profits / Digital 1
Cryptanalysis ~ f— Artifact L and used by" \  Rights Groups H
' '

Fischer et al, The Challenges of Bringing Cryptography from Research Papers to Products: Results from an Interview Study

with Experts, USENIX Security 2024
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with Experts, USENIX Security 2024
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Cryptographic building blocks

Examples
¢ AES: Symmetric encryption
* Enc(k,m) = ¢, Dec(k,c) = m.
* SHA-2: Hash function
° H(m) = h.
* Diffie-Hellman: Public key agreement

Components
* Cryptography manifests as a set of
primitives, from which we build
protocols intended to accomplish
well-defined security goals.
* Primitives: AES, RSA, SHA-2, DH...

* Protocols: TLS, Signal, SSH, FileVault .
) * Allows two parties to agree on a
2, BitLocker... secret key k.
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Cryptographic building blocks

Examples

Security goals ¢ Confidentiality: When you send a
private message on Signal, only you
and the recipient can read the
content.

* Confidentiality: Data exchanged
between Client and Server is only

known to those parties.
* Authentication: When you receive an

email from your boss, you can verify it
actually came from them.

* Authentication: If Server receives
data from Client, then Client sent it to

Server.
* Integrity: Your computer can verify

that software update downloads
haven't been tampered with during
transmission.

* Integrity: If Server modifies data
owned by Client, Client can find out.
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Security goals: more examples

* TLS (HTTPS) ensures that data exchanged between the client and the server is
confidential and that parties are authenticated.

* Allows you to log into gmail.com without your ISP learning your password.
* FileVault 2 ensures data confidentiality and integrity on your MacBook.

° Prevents thieves from accessing your data if your MacBook is stolen.
* Signal implements post-compromise security, an advanced security goal.

¢ Allows a conversation to “heal” in the event of a temporary key compromise.
* More on that later in the course.
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Why bother?

* Can't we just use access control?

* Strictly speaking, usernames and passwords can be implemented without
cryptography...

* Server checks if the password matches, or if the IP address matches, etc. before
granting access.

* What's so bad about that?

* Requires trusting the server completely

* No protection during transmission

* No way to verify integrity

* No way to establish trust between strangers

-
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The magic of cryptography

Cryptography lets us achieve what seems impossible

« Secure communication over insecure channels
* Verification without revealing secrets
* Proof of computation without redoing it
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Hard problems

* Cryptography is largely about equating the security of a system to the difficulty
of solving a math problem that is thought to be computationally very expensive.
* With cryptography, we get security systems that we can literally mathematically
prove as secure (under assumptions).
* Also, this allows for actual magic.
* Alice and Bob meet for the first time in the same room as you.

° You are listening to everything they are saying.
* Can they exchange a secret without you learning it?
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Time for actual magic

Alice’s “public key”

i

g*modp

Bob’s “public key”

{

v

Bob

o b
Alice < g
Knows public g = 2
Knows public prime p
Generates random a K = g*® mod p = g"* mod p

Why does this work?
« Listener only knows g,p, g% g°
e Assuminga, b, p are large enough and p is prime...
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Knows public g = 2
Knows public prime p
Generates random b

Bob’s “private key”
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No known feasible computation

* The discrete logarithm problem:
* Given a finite cyclic group G, a generator g € G, and an element h € G, find the
integer x such thatg* = h
* In more concrete terms:

* Let pbealarge prime and let g be a generator of the multiplicative group Z; (all
nonzero integers modulo p).
° Given:
gEZ;,hez;
Findx € {0,1,...,p — 2} such that g* = h (mod p)
° This problem is believed to be computationally hard when pis large and gis a
primitive root modulo p.
“Believed to be” = we don’t know of any way to do it that doesn't take forever, unless
we have a strong, stable quantum computer (Shor's algorithm)
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Hard problems

Asymmetric Primitives
* Diffie-Hellman, RSA, ML-KEM, etc.

* “Asymmetric” because there is a

“public key” and a “private key” for
each party.

* Algebraic, assume the hardness of

mathematical problems (as seen just
now.)
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Symmetric Primitives
* AES, SHA-2, ChaCha20, HMAC...

* “Symmetric” because there is one
secret key.

* Notalgebraic but unstructured, but
on their understood resistance to n
years of cryptanalysis.

* Can act as substitutes for
assumptions in security proofs!

* Example: hash function assumed to

be a “random oracle”
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Kerckhoff's principle

* “A cryptosystem should be secure even if everything about the system, except
the key, is public knowledge.” — Auguste Kerckhoffs, 1883
* Why it matters:

* No “security through obscurity”

° The key is the only secret: the rest can be audited, tested, trusted

* Encourages open standards and peer review

* If your system'’s security depends on nobody knowing how it works, it's not secure.
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Takes input of any size[<+->]
Produces output of fixed size

Is deterministic (same input — same
output)

Even a tiny change in input creates
completely different output

Is efficient to compute

Symmetric primitive example: hash functions

SHA256(hello) =
2cf24dba5fb0a30e26e83b2acsS
b9e29elblé6le5clfa7425e7304
3362938h9824

SHA256(hullo) =
7835066a1457504217688c85d
06909c6591eBca78c254cctl174
50d0d999cabl

Note: One character change —
completely different hash!



Expected properties of a hash function

* Collision resistance: computationally
infeasible to find two different inputs (AIBICIDIEIFIGIH]
producing the same hash.

* Preimage resistance: given the output of a
hash function, it is computationally infeasible
to reconstruct the original input.

* Second preimage resistance: given an input
and an output, it's computationally infeasible
to find another different input producing the SHA-2 comprevsii(?:ezui:ctionvSource:
same output.

¢
[A[BICID[E[F[GTH]
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Hash functions: what are they good for?

* Password storage: Store the hash of the password on the server, not the
password itself. Then check candidate passwords against the hash.

+ Data integrity verification: Hash a file. Later hash it again and compare hashes
to check if the file has changed, suffered storage degradation, etc.

* Proof of work: Server asks client to hash something a lot of times before they
can access some resource. Useful for anti-spam, Bitcoin mining, etc.

* Zero knowledge proofs: time for more actual magic
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Time for more actual magic

+ Zero-knowledge proofs allow you to prove
that you know a secret without revealing any
information about it.

* They built “zero-knowledge virtual machines”
where you can execute an entire program that
runs as a zero-knowledge proof.

» ZKP battleship game: server proves to the
players that its output to their battleship
guesses is correct, without revealing any
additional information (e.g. ship location).
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Battleship board game. Source: Hasbro
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Evaluating a hash function’s quality

* Recall: = 4 = =
° Asymmetric primitives are based on -
mathematical problems, can be
mathematically proven secure (given
assumptions!)
* Symmetric primitives (encryption, hashing..)

are statistically, empirically, heuristically
shown to be secure, not proven secure. %ﬁgg i

* The more cryptanalysis they survive, the "
higher confidence we have in their security. Cryptanalysis of AES.
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What about encryption?

* Symmetric primitive of choice for encryption:

AES.

* Not that far off in terms of design process
from hash functions, but:

* AESis a PRP (pseudorandom permutation)
* HMAC-SHA256 is a PRF (pseudorandom
function)
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AES's SubBytes operation. Source:
Wikipedia
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PRF versus PRP

Pseudo-Random Function (SHA-2) Pseudo-Random Permutation (AES)

. . * |nput and output are the same
* Inputis arbitrary-length, P P

length, forming a permutation.
* Output is fixed-length, looks random

(as discussed earlier). * Each input maps uniquely to one

output, allowing invertibility.
* Indistinguishable from a truly

random function by an adversary
with limited computational power.

* Indistinguishable from a truly
random permutation by an adversary
with limited computational power.
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PRE:F,=X—>Y

* We want the mapping to be:
* One-way
° “Randomized”
° Relations between inputs
not reflected in outputs

Applied Cryptography - American University of Beirut

Input space (domain) X Output (range) Y

Size: fixed

Size: infinite!
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PRP:F =X > X

* Bijective (two-way)

* Injective: no two inputs
map to same output (no
collisions)

° Surjective: Every output
has one corresponding
input

* “Randomized”

* Relations between inputs
not reflected in outputs
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Input space (domain) X

Output (range) X

Size: fixed

Size: fixed
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AES is a block cipher

AES takes a 16-byte input, produces a 16-byte output.
* Key can be 16, 24 or 32 bytes.
* 0K, so what if we want to encrypt more than 16 bytes?

Proposal: split the plaintext into 16 byte chunks, encrypt each of them with the
same key.
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Block cipher examples

iyl

What we start with What we get What we actually want
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Block cipher modes of op

Electronic Codebook (ECB)

Plaintext Plaintext Plaintext

eration

Cipher feedback (CFB)

v

Key-»{block cipher]

Key—>(block cipher)  Key—»(block cipher]  Key—»(block cipher]

2 v
Key-»{block cipher) | Key-»{block cipher]

Ciphertext Ciphertext Ciphert

ext

Ciphertext— Ciphertext— Ciphertext:
Cipher block chaining (CBC) output feedback (OFB)
Plaintext Plaintext Plaintext N

D D Key-»{block cipher) | Key-»{block cipher] |Key-»{block ciphe!

Key»(block cipher) | Key»{block cipher X !

Plaintext lai > lai e

. i — Ciphertext: v v
Ciphertext— Ciphertext iphertex Ciphertext Ciphertext Ciphertext

Propagating cipher block chaining (PCBC)

Plaintext— Plaintext: Plaintext
4 x4 &
v »D >

K

Counter (CTR)

<Nonce, Counter+1>  <Nonce, Counter+2>

Key-»{block cipher]  Key-»{block cipher]

Key-»{block cipher]

Key-»(block cipher] | Key-»(block cipher] | Key-»(block cipher)

Ciphertext— Ciphertext Ciphertex
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j <Nonce, Counter>
K
Plaintext Pl
t— Ciphertext

Source: Wikipedia

aintext: Plaintext:

Ciphertext Ciphertext
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Cryptographic building blocks

Examples

Security goals ¢ Confidentiality: When you send a
private message on Signal, only you
and the recipient can read the
content.

* Confidentiality: Data exchanged
between Client and Server is only

known to those parties.
* Authentication: When you receive an

email from your boss, you can verify it
actually came from them.

* Authentication: If Server receives
data from Client, then Client sent it to

Server.
* Integrity: Your computer can verify

that software update downloads
haven't been tampered with during
transmission.

* Integrity: If Server modifies data
owned by Client, Client can find out.
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Security goals: more examples

* TLS (HTTPS) ensures that data exchanged between the client and the server is
confidential and that parties are authenticated.

* Allows you to log into gmail.com without your ISP learning your password.
* FileVault 2 ensures data confidentiality and integrity on your MacBook.

° Prevents thieves from accessing your data if your MacBook is stolen.
* Signal implements post-compromise security, an advanced security goal.

¢ Allows a conversation to “heal” in the event of a temporary key compromise.
* More on that later in the course.
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TLS 1.3: high-level sketch

TLS 1.3

Client Server

o=

Source: Mostafa Ibrahim
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TLS 1.3: high-level sketch

TLS 1.3
* Public key agreement (eg. o
Diffie-Hellman) is used to establish a oy SFEL
shared secret between the client and

the server. f \ e
* AES is used for encrypting data in /
@H‘FTP Request

transit.

* SHA-2 is used for hashing (checking |

certificates, etc.)

Source: Mostafa Ibrahim
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TLS 1.3: high-level sketch

TLS 13
* Through the design, we accomplish
the desired security goals under a L. o

well-specified threat model: \

* Security goals: confidentiality of

data, authentication of the server /
@H‘F‘FP Request

towards the client...

* Threat model: malicious Internet

Service Provider (ISP), etc.

@ Key Share. Certificate
Verify. Finished.

Source: Mostafa Ibrahim
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How TLS 1.3 was made

Security Proofs &
Formal Verification

Products with
Cryptography

K Standard Development
Theoretical Cryptographers Organizations
Industry
Cryptography Stakeholders
Standards
Cryptographic
Algorithms
& Protocols Secure Implementations
Applied (Cryptography Libraries) Product
Cryptographic Designers Cryptographers | Designers
Legend
T
Cryptanalysts
Actor / Role E’—H:I "Creates"
"Is chosen
Cryptanalysis Artifact Lt and used by"
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End Users

Organizations

Product Security
Analysts

* Governments

* Media

« Non-Profits / Digital
Rights Groups
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How TLS 1.3 was made

Security Proofs &
Formal Verification

Standard Development
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From hard problems to real-world security

The journey we'll trace

1. Mathematical insight: Discrete logarithm is hard to compute.
2. Cryptographic innovation: Diffie-Hellman key exchange leverages this hardness.
3. Real-world impact: Secure communication for billions of people daily.

This is the power of applied cryptography: transforming abstract mathematical
problems into tools that help people and protect our digital lives.
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Course goals

* Understand the reasoning behind the math of modern cryptography.
* Analyze and prove the security of cryptographic constructions.

* Understand how cryptographic constructions can be composed to build
real-world secure protocols and systems.

* Discern between theoretical cryptography and applied cryptography from an
engineering perspective.

* Critically assess security implementations and evaluate real-world
cryptographic protocols.

* Gain an understanding of the future of cryptography and its role in emerging
technologies.
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Course prerequisites

* Good but optional: CMPS 215 (Theory of Computation)

* If you want to understand whether you have the sufficient background for this
course, review this revision chapter and try to do all the exercises:
https://joyofcryptography.com/pdf/chap0.pdf

Applied Cryptography - American University of Beirut 38/ 40



https://joyofcryptography.com/pdf/chap0.pdf

Class materials

* Joy of Cryptography: learn how to reason about and prove systems secure.
* Attack papers, codebases, labs: hard engineering perspective.

* Always keep an eye on the website: Course news, updates, materials, slides will
all be posted there. https://appliedcryptography.page

* lam aiming for the most engaging course possible!
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