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Abstract. WhatsApp provides end-to-end encrypted messaging to over
two billion users. However, due to a lack of public documentation and
source code, the specific security guarantees it provides are unclear. Seek-
ing to rectify this situation, we combine the limited public documentation
with information we gather through reverse-engineering its implemen-
tation to provide a formal description of the subset of WhatsApp that
provides multi-device group messaging. We utilise this description to state
and prove the security guarantees that this subset of WhatsApp provides.
Our analysis is performed within a variant of the Device-Oriented Group
Messaging model, which we extend to support device revocation. We
discuss how to interpret these results, including the security WhatsApp
provides as well as its limitations.
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1 Introduction

Group messaging in WhatsApp is based on the Signal two-party protocol and
the Sender Keys multiparty extension [66, 8]. To date, in the academic literature,
the ground truth for answering the question of how these building blocks are
composed precisely is established by the WhatsApp security whitepaper [66] or
unofficial third-party protocol implementations, cf. [60, 9, 8, 31]. Based upon
these, [8] – appears at RECSI 2020 [9] – represents the most ambitious attempt
so far to model WhatsApp’s security. This work includes a security proof and
models the interactions between the two-party Signal channels and Sender Keys.

1.1 Contributions

However, while a major step forward in establishing the security guarantees of the
WhatsApp protocol, this work still comes with a series of caveats and limitations.

Scope. The security experiment does not capture multiple groups, which are
ubiquitous in practice. Also, it covers only the group messaging functionalities of
the Sender Keys protocol and does not consider how a user’s multiple devices are
managed, the security guarantees this provides and how these interact with group
messaging. On the other hand, other prior works have demonstrated that features
such as session management, multi-device management and history sharing can
interact with, and undermine, the security guarantees of the underlying channels
in unexpected ways [2, 60, 3, 30, 28].

Contribution 1: We provide a formal description of WhatsApp’s group mes-
saging protocol that covers session management, multi-device management and
history sharing.

Implementation. As mentioned above, the analysis in [8] is based on the Whats-
App whitepaper but not WhatsApp’s implementation, leaving open the question
of how accurate the whitepaper is.

Contribution 2: We provide pseudocode for the WhatsApp protocol which is
based on both the WhatsApp whitepaper [66] and examining the minified JavaScript
source code of the WhatsApp web client.3

Model. We express our description of WhatsApp within a variant of the Device-
Oriented Group Messaging (DOGM) [3] model. In doing so, we find that the
model lacks support for device revocation.

Contribution 3: We propose an extension to the DOGM model to capture device
revocation. This enables our extended model to capture how the revocation of a
compromised device propagates to the post-compromise security (PCS) guarantees
of the underlying messaging channels and, in turn, the security of user messages.

3 We also performed some spot checks using decompiled WhatsApp Android application.
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Multiple Channels. The analysis in [8] relies on the assumption that the number
of underlying two-party channels between any two parties is one. This is the
configuration implied both by Signal’s original description of the Sender Keys
protocol [50] and WhatsApp’s security whitepaper [66]. This is not the case,
however. The libsignal library allows multiple active Signal channels between a
single pair of devices [53, 30, 28], all of which can be used to distribute Sender
Keys sessions. We confirm, in this work, that this translates into WhatsApp’s
implementation.4 As explored in [30, 28], adversaries with the ability to initialise
new sessions can undermine the security guarantees of an existing channel post-
compromise. As discussed in [3], this has additional and compounding effects on
the PCS guarantees of the Sender Keys protocol. To our knowledge, this is the
first analysis of this session management layer in the computational setting; prior
works were in the symbolic model.

Contribution 4: Building on prior work modelling the interaction between
Sender Keys and the underlying two-party channels it relies on, we derive and
prove the forward secrecy guarantees WhatsApp group messaging provides in the
face of multiple active two-party channels between a single pair of devices.

In Section 5.2 we sketch attacks that undermine expected PCS guarantees.

Recovery. We proceed to derive (and prove) the security guarantees of Whats-
App’s multi-device secure group messaging within the DOGM model, capturing
the interactions between the messaging channels, the multi-device management
and history sharing sub-protocols. In doing so, we show that WhatsApp’s use
of device revocation allows a user to effectively recover security after a known
compromise.

Contribution 5: We prove security guarantees of WhatsApp’s group messaging
protocol in the DOGM model, demonstrating how the session management, device
management and history sharing interact with the security guarantees of the
underlying messaging protocol.

Remark 1. We sent our work to WhatsApp for comments and received feedback,
including that our description of the protocol is correct, by WhatsApp engineers.

1.2 Scope & Limitations

The accuracy of our results relies on the accuracy of our description of WhatsApp
in Section 3. This description is based upon a reverse engineering of the client’s
implementation, a process which is necessarily imperfect without access to source
code. Our work is based primarily on the WhatsApp web client, archived on 3rd

May 2023, and version 6 of the WhatsApp security whitepaper [66].
To make the analysis tractable, we sometimes simplify WhatsApp’s func-

tionality and aim to document all such simplifications as they arise in the text.
4 This is also the case in Matrix [2, 3].
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Additionally, our description is not complete: we focus on functionality that is
relevant to our modelling. For example, while WhatsApp does provide immediate
decryption [4]5 in both its pairwise and group channels, neither our description
nor analysis reflect this (in contrast, [8] does). We, additionally, do not capture
immediate decryption within the pairwise channels that are used to distribute
Sender Keys sessions. A single cached message key for the pairwise channel allows
the adversary to establish a new Sender Keys session; subverting the limitations
on such cached keys.

Our analysis assumes trusted distribution of user identities. Doing so allows us
to focus on other aspects of the protocol. We refer to WhatsApp’s documentation
on out-of-band verification [66, Page 24] and key transparency [67] whitepaper for
WhatsApp’s claimed assurances in this area. In keeping with the theme of this
work, though, we caution against relying solely on whitepapers for establishing
security guarantees and encourage such an independent analysis of this feature
and its composition with the other protocols in WhatsApp.

As a consequence of the above, it is possible for the server to reset a user’s
cryptographic identity. Clients default to not displaying such a change to users.
As discussed, by sheer volume of the required work, we have to consider this out
of scope of our analysis. We note that this weakness might be mitigated to some
extent by WhatsApp’s use of key transparency, but again caution that without a
formal analysis the question of what guarantee can be expected is open.

Critically, group membership is not cryptographically authenticated in Whats-
App, as already established in prior works [60, 9, 8]. Clients display group mem-
bership and thus participants in group chats could potentially review their groups
regularly to mitigate the effect of this. However, as discussed in [2], this puts an
unduly burden on those who (have to) rely on WhatsApp, especially in a setting
of up to 1024 members per group.6 We, here, do not “report” this behaviour as a
vulnerability simply because this “behaviour” has been reported in the literature
before. For the avoidance of doubt, we do consider this a critical vulnerability
undermining otherwise strong cryptographic guarantees. In our model this is
captured as a trivial win, which should be interpreted as: “If WhatsApp addresses
this issue then the protocol achieves the stated security guarantees”.

1.3 Related Work

Direct Analysis. WhatsApp utilises the Signal protocol [66] which has seen
varying analyses of its pairwise messaging protocol [25] and the Double Ratchet
algorithm it uses [4, 17]. WhatsApp’s key transparency implementation [67] builds
5 A protocol that provides immediate decryption allows sessions to decrypt out-of-

order messages immediately after receiving them, while maintaining the ability to
any skipped messages in the future. This is achieved in WhatsApp by caching the
per-message key material for a limited number of messages.

6 We note that the same issue was reported as a vulnerability in [2], in response to
which the Matrix developers committed to fixing the issue, at the time of writing
this work is ongoing.
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upon [44] the design of PARAKEET [49]. WhatsApp’s application state synchro-
nisation feature utilises [67] the LtHash homomorphic hashing algorithm [48, 13].
[31] analyse the security of WhatsApp’s end-to-end encrypted backups.

Multi-Device Messaging. WhatsApp allows users to participate through mul-
tiple devices. [32] present a systemisation of knowledge on multi-device secure
messaging, surveying existing deployments and their approaches. [23] propose
a design for multi-device secure messaging based upon the underlying Signal
pairwise messaging protocol. [3] study the security of Matrix, a communication
platform that supports multiple devices and group messaging simultaneously,
and introduce the Device-Oriented Group Messaging formalism to capture such
protocols. [26] propose Asynchronous Ratchet Trees to provide asynchronous
group key exchange and, in doing so, suggest the use subtrees to capture a user
with multiple devices.

Group Messaging. Prior analysis of the group messaging protocol utilised by
WhatsApp, the Sender Keys component of Signal, is sparse. [60] identified a num-
ber of weaknesses in deployed group messaging protocols, including WhatsApp,
and made initial progress towards defining the security goals we might expect
from them. [8] present a formalism and analysis of the Sender Keys protocol.
[58] present a systemisation of knowledge on game-based models for group key
exchange. The continuous group key agreement (CGKA) line of work, initiated
in [5], focus on group key exchange in the context of the Message Layer Security
(MLS) standard. [6] lifts such analysis from key exchange to messaging.

Compromise Recovery. The notion of PCS was formalised in [27]. The work
focused on the compromise of long-term key material with a focus on single
sessions (or ratchet chains). The PCS guarantees of Signal pairwise channels were
analysed in [25, 4]. The resulting security guarantees apply to adversaries that
at some point become passive and do not consistently interfere with protocol
execution after a compromise. [10], building on prior works such as [21], consider
PCS against active attackers (in a single session setting). The work considers both
in-band, adding information to the ciphertexts, and out-of-band communication,
requiring a second channel. In either case, recovery requires the adversary to
allow at least one message through without tampering. [28] demonstrate that
the PCS guarantees of Signal pairwise channels are undermined if clients allow
multiple sessions between parties. [30] formally analyse this setting and derive the
resulting PCS guarantees. [18] introduce a model to capture protocols’ ability to
recover from varying levels of state compromise, from session state to long-term
identity keys. [29] study the ability of groups to recover security after individual
members are compromised and, in particular, how this affects the security of
multiple groups with overlapping members.

Device Management and Revocation. The public key orbit formalism introduced
in Section 4 is intended to capture the device management features of WhatsApp.
As such, it covers similar ground to that of Keybase’s sigchain [38] and the
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related constructions used by Zoom [19] and ELEKTRA [46]. The latter presents
a formalism for sigchains. Our formalism differs in a couple of ways. First, public
key orbits encode a hierarchy of keys, with the primary key being an authority
over which devices may be linked (or unlinked). The sigchains used by the
aforementioned protocols are more flexible. Secondly, WhatsApp’s reuse of the
identity key across multiple sub-protocols necessitates the provision of a restricted
signing oracle (and to prove security of the protocol in the face of such oracles).

Similar problems have also been studied in adjacent areas, such as certificate
revocation [39], proactive security in signature schemes [20, 64], revocation
within anonymous credential schemes [22] and recent proposals for revocation in
FIDO2 [35].

2 Preliminaries

We specify the notation and define the primitives used in this work. The main
body starts with Section 3 on page 17.

2.1 Notation

Constants. Unless otherwise specified, the length of bit-strings are specified in
bits (not bytes). We suffix indices/lengths with ‘b’ to make this explicit (or ‘B’
to indicate that they are specified in bytes). For example, ‘xs←$ {0, 1}16B’ has
bit-length 128 such that ‘xs[9B→ 128b]’ is equivalent to ‘xs[72→ 128]’. When
specifying slices, from a bit-string for example, we sometimes only specify the
type once (in which case all values are implicitly the same), i.e. ‘xs[9→ 128B]’ is
equivalent to ‘xs[9B→ 128B]’.

Pseudocode. We make some of our pseudocode choices explicit.

Assertions and ⊥ The syntax ‘assert boolean-expression’ will evaluate the given
expression. Then, if the expression evaluates to false, halt execution of the
function and return ⊥.

Let Expressions A let expression takes the form ‘let var ∈ set st constraints ’. It
expresses the process of (a) searching for a value within the set set that satisfies
the constraints constraints, followed by (b) saving the resulting value in the
variable var . A let expression may, additionally, be extended to handle special
cases. First, ‘if no matches : . . .’ details how to handle the case where no
matching value is found. Second, ‘if multiple matches subset : . . .’ details how
to handle the case where there are multiple matching values in the set (saved to
the variable named subset). Third, ‘assert unique match ’ asserts that there
is exactly one matching value.
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Optional Arguments/Return Values Procedures may have optional arguments
and return values, in which case, they are always filled with a default value.
The default value for arguments is represented in the function definition by
‘argument-name

default←− default-value’. The default for all return values is null, ‘∅’.
Since functions always include their optional arguments (or return values), it
follows that their type signatures are constant (w.r.t. optional values).

Pattern Matching Procedures may be defined for particular argument values (or
patterns), using the syntax ‘argument-name

is
=pattern-or -value’. When describing

a pattern, the value · matches any value (including ∅). If a procedure is not
defined for all possible values, any cases left undefined execute no instructions
and output ‘⊥’ for all return values. If the interpretation of ‘pattern-or -value’
is not clear, it should be described in prose as part of the definition. Pattern
matching may also be used when unpacking a tuple, in which case the statement
should be interpreted as an assertion that is checked before the unpacking
operation is executed. In other words,‘x is

= 1, y, z ← (0, 1, 2)’ is equivalent to
‘xtmp , ytmp , ztmp ← (0, 1, 2);assert xtmp = 1;x, y, z ← (0, 1, 2)’.

Lists We represent lists with the notation ‘[a, b, c]’. Sharing most of their seman-
tics with an ordered tuple, lists also support (a) iteration, i.e. ‘for x in [a, b, c] :
. . .’, (b) indexed access, i.e. ‘[a, b, c][1]’ evaluates to b, (c) indexed assignment,
i.e. ‘[a, b, c][1]← d’ results in the list [a, d, c], and (d) slices, i.e. ‘[a, b, c][0→ 1]’
evaluates to the list [a, b]. Slices are inclusive of the endpoint given, i.e. ‘xs[s→ e]’
includes the item at point xs[e]. If a slice reaches out-of-bounds, it returns all
the elements it can (without error), i.e. ‘[a, b, c][0 → 10]’ evaluates to [a, b, c].
The length of a list can be computed with the len() algorithm, i.e. ‘len([a, b, c])’
evaluates to 3. As with tuples, lists can be concatenated, i.e ‘[a, b] ‖ [c, d]’ eval-
uates to [a, b, c, d]. We can append an individual item to a list using the ←app

assignment operator, i.e. ‘xs ← [a, b]; xs ←app c’ results in xs = [a, b, c]. We
allow enumerating over the elements of a list with the ‘ enum in ’ key word,
i.e. ‘for (idx , el) enum in [a, b] : ’ will loop over the tuples ‘(0, a)’ and ‘(1, b)’.

List Comprehensions Lists can be built from other lists using similar syntax (and
semantics) to set notation: ‘as← [fn(b) for b in bs if condition(b)]’. For example,
‘ms← [n+ 1 for n in [0, 1, 2, . . .] if n mod 3 = 0]’ results in ms = [1, 4, 7, . . .].

Items in Lists It can sometimes be useful to make claims about the relative posi-
tion of two elements in a list. To enable this, we provide the ‘a precedes b in xs’
predicate, which is true whenever the element a precedes b in the list xs. Preces-
sion implies existence, i.e. ‘0 precedes 1 in [1, 2, 3]’ is false. Such statements
are non-inclusive, i.e. ‘2 precedes 2 in [1, 2, 3]’ evaluates to false. We allow
pattern matching expressions within a and b, for which ‘a precedes b in xs’
returns true if all elements matching a precede all elements matching b in
the list xs. This latter case can be regarded as syntactic sugar equivalent to
‘∀ x, y ∈ xs : a(x) ∧ b(y) =⇒ x precedes y in xs’.
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Maps A map stores any finite number of key-value pairs, with each key map-
ping to a particular value. Maps are initialised with, and implemented as, an
unordered list of tuples: ‘m ← Map{(x, 0), (y, 1), (z, 2)}’. They also support:
(a) iteration i.e. ‘for (k, v) in m : . . .’, (b) access i.e. ‘m[y]’ evaluates to 1,
and (c) assignment i.e. ‘m[x] ← 3’ sets the value that m associates with key
x to 3. When a value is accessed for a key that does not exist, the result is
null: ‘m← Map{(0, 10), (1, 20)};x← m[2]’ sets the value of x to ∅.

Objects We allow the creation of objects using the Obj algorithm, which takes as
input a string representing the object type followed by a number of key-value
pairs and returns an object. We model each object as a tuple of values, with each
value typed by their given (keyed) slot. Thus, the type of an object is the type of
the resulting tuple (which should be defined in the surrounding prose) and objects
can be freely interacted with as if they are an ordered tuple (following the order
of the key-value pairs given at creation time). In addition, we afford them the
following extra conveniences. Individual properties can be accessed (and written
to) using the object name followed by a dot and the respective key, i.e. ‘Obj(
example, x = 1).x’ evaluates to ‘1’. A special property, ‘.type’ returns the type of
the object (and is read-only). Objects are (implicitly) encoded into bit-strings for
transmission over the wire, or when generating a signature, for example. Such
encodings are intended to approximate WhatsApp’s use of Protocol Buffers to
encode messages.

Private and Public Keys We use the ‘sk ’ and ‘pk ’ suffixes to refer to the private
and public counterparts of a key pair. These may be prefixed with a letter to
indicate their use. For example, we use ‘(isk , ipk)’ to refer to the identity keys of
a device and ‘(xsk , xpk)’ to refer to keys used for key exchange. Since WhatsApp
re-uses keys for key exchange and signature schemes, we avoid using terms such
as signing key and verification key. Within pseudocode, we use the PK algorithm
to calculate the public key from a private key.

Security Experiments

Shared State By default, all algorithms executed by the challenger (i.e. the
experiment and its oracles) have access to a shared global state. The adversary
only has access to state that is explicitly granted to them through calls to A or
oracles.

Abort The instruction abort can be used to end the current experiment early.

Pattern Matching in Oracles We assume that if any check (‘is
=’) fails in any of

the oracle calls then the oracle stops executing immediately and returns ⊥. We
suppress type checks as these are not cryptographically enforced.

https://protobuf.dev/
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Instant Win We expect the challenger to only set the win flag after they are
sure the adversary has won the game. For example, they are expected to check
all relevant security predicates are satisfied beforehand. It is now easy to argue
that the output of an experiment will always be 1 once the win flag has been
set. It follows that the distribution of the experiment is not affected by ending
the game immediately. Thus, we specify that the experiments in this work end
immediately after the win is set. Making this explicit enables us to simplify our
reasoning and exposition in some cases.

Changes between Games We highlight the changes between consecutive games
in our proofs. Consider the code snippet ‘assert b = b′’ as the starting point
for our example. Additions are marked as ‘assert b = b′ ∧ CONF’ and changes
are marked as ‘assert b = 1 ∧ CONF’. Code that has been removed is marked
as ‘assert b = 1 ∧ CONF’.

Security Reductions When building an adversary as part of a security reduction,
we highlight where the adversary embeds a challenge from the outer experiment
into the inner adversary’s simulation, marked as ‘c← AEAD.Enc(h,m)’.

Schemes & Protocols. We represent each scheme and/or protocol as a tuple
of algorithms that represent its external interface. The interface of individual
algorithms is defined by the supplied type signature, while their behaviour is
defined through pseudocode. In most cases, this tuple of algorithms does not
sufficiently describe the scheme and we must rely on the surrounding prose and
figures to define how these algorithms interact with one another and, importantly,
how they should be used.

2.2 Primitives

Message Authentication Codes. A message authentication code (MAC)
allows parties that share a secret to exchange messages that guarantee (a) only
those parties possessing the shared secret may create valid messages, and (b) such
messages have not been modified in transit. We follow the definition and security
notions of [37].

Definition 1 (Message Authentication Code). A MAC scheme consists
of two algorithms MAC = (MAC.Gen, MAC.Tag, MAC.Verify) with an associated
key space K = {0, 1}λ, message space M⊆ {0, 1}∗ and tag space T ⊆ {0, 1}∗.

1) The key generation algorithm, MAC.Gen : ∅ → K, takes no input before
outputting a new key.

2) The tag generation algorithm, MAC.Tag : K ×M $→ T , takes as input a
key and message before outputting a tag.

3) The tag verification algorithm, MAC.Verify : K ×M× T → {0, 1}, takes
as input a key, a message and a tag before outputting a bit indicating
whether the tag is valid.
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Definition 2 (Correctness of MAC Schemes). A MAC scheme is correct
if, for all k ∈ K and m ∈M,

MAC.Verify(k,m,MAC.Tag(k,m)) = 1.

Definition 3 (Existential Unforgeability of MAC Schemes). A MAC
scheme MAC provides existential unforgeability under chosen message attack
(EUF-CMA) if any probabilistic polynomial-time adversary A has a negligible
advantage of winning the ExpEUF-CMA

MAC,nq
(A) security experiment detailed in Figure 1.

The experiment is parameterised by nq which limits the number of Tag queries
that the adversary may make before submitting their guess.

ExpEUF-CMA
MAC,nq

(A)

1 : k ←$ K; qs← ∅

2 : (m, t)← ATag()

3 : return m /∈ qs ∧MAC.Verify(k,m, t) = 1

Tag(m)

1 : t← MAC.Tag(k,m)

2 : qs←∪ {m}
3 : return t

Fig. 1: The EUF-CMA security experiment for MAC schemes.

Definition 4 (Strong Existential Unforgeability of MAC Schemes).
A MAC scheme MAC provides strong existential unforgeability under chosen
message attack (SUF-CMA) if any probabilistic polynomial-time adversary A
has a negligible advantage of winning the ExpSUF-CMA

MAC,ΛSUF-CMA
(A) security experiment

detailed in Figure 2. The experiment is parameterised by nq which limits the
number of Tag queries that the adversary may make before submitting their guess.

ExpSUF-CMA
MAC,ΛSUF-CMA

(A)

1 : k ←$ K; qs← ∅

2 : (m, t)← ATag()

3 : return (m, t) /∈ qs ∧MAC.Verify(k,m, t) = 1

Tag(m)

1 : t← MAC.Tag(k,m)

2 : qs←∪ {(m, t)}
3 : return t

Fig. 2: The SUF-CMA security experiment for MAC schemes.

The protocols we study use the HMAC(k,m) (or HMAC-SHA256) Hash-based
Message Authentication Code (HMAC) constructed with SHA256 [63], taking as
input a key k and message m [40]. In this work we assume that HMAC-SHA256
provides SUF-CMA security Definition 4. Throughout, we use HMAC to refer to
HMAC instantiated with SHA256, i.e. HMAC-SHA256.
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Key Derivation and Pseudorandom Functions. We follow [37, Definition
3.25] in defining pseudorandom functions.

Definition 5 (Pseudorandom Function). A PRF consists of a single algo-
rithm, PRF, taking as input a key k of length λk, an input x of length n, and
outputting a string y of length `(n):

PRF : {0, 1}λk × {0, 1}n × {0, 1}`(n)

We call `(n) the PRF’s expansion factor.

Let Func(n,m) denote the set of all functions mapping n-bit strings to m-bit
strings, and define the security of pseudorandom functions as follows.

Definition 6 (Security of Pseudorandom Functions). A PRF with key
length λk, input length n and expansion factor `(n) is secure if any probabilistic
polynomial-time adversary A has a negligible advantage of winning the ExpPRFPRF(A)
security experiment detailed in Figure 3.

ExpPRFPRF(A)

1 : k ←$ {0, 1}λk ; f ←$ Func(n, `(n))

2 : b←$ {0, 1}; b′ ← AEval()

3 : return b = b′

Eval(x)

1 : y0 ← PRF(k, x)

2 : y1 ← f(x)

3 : return yb

Fig. 3: The security of PRF with seed length n and expansion factor `(n).

WhatsApp uses both HMAC and HKDF as pseudorandom functions. In this
context, we express HMAC (or HMAC-SHA256) [43] as HMAC(k,m), taking a
256-bit seed k and a variable length message m before outputting a 256-bit string.
Utilising [11], we assume that HMAC-SHA256 is a secure pseudorandom function
as defined by [37, Definition 3.25].

Similarly, WhatsApp uses HKDF-SHA256(s, k, i, `), an implementation of
HKDF [41, 42], taking as input a public salt s, private key material k, info i and
length ` before returning a bit-string of length `. Throughout, we use HKDF to
refer to HKDF instantiated with SHA256, i.e. HKDF-SHA256.

The definition of KDF security in [42] assumes that a fresh, uniformly random
salt is used with each piece of private key material. However, as is common
in practice, WhatsApp uses HKDF-SHA256 in a number of places with a null
salt. While we cannot directly assume that such use of HKDF-SHA256 achieves
KDF security as defined in [42], if the private key material being used is already
pseudorandom, we do not require the extraction functionality of the KDF. Instead,
we simply require that the HKDF itself acts as a pseudorandom function. For
this, we use the following lemma.
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Lemma 1 (PRF Security of HKDF). HKDF-SHA256 [41, 42], when used
with a constant salt and pseudorandom initial key material, realizes a secure pseu-
dorandom function as defined in Definition 6. Specifically, letting PRFl

HKDF(k, x) :=
HKDF(∅, k, x, l), the advantage of any probabilistic polynomial-time adversary A
in winning the PRF security experiment against a challenger instantiated with
PRF

`(256)
HKDF is negligible in the number of queries. We denote this advantage by

AdvPRFHKDF(λk, nq).

Intuitively, this requires that the first use of HMAC within HKDF, in the
extraction phase, does not reduce the ability of the second use of HMAC in the
expand phase, to produce a pseudorandom bit-string of the required length. When
HKDF is used in this context (with pseudorandom key material and a constant
salt) the extraction stage is using HMAC as a swap-PRF and the expansion stage
uses HMAC as a PRF. Both of these requirements are satisfied in some cases,
as detailed in [7], and we expect that Lemma 1 follows closely. Nonetheless, we
rely on this assumption without proof.

Symmetric Encryption. WhatsApp uses AES-CBC for symmetric encryption7.
A symmetric encryption scheme allows parties that share a secret to exchange
encrypted messages whose contents remain confidential between themselves. Our
syntax loosely follows the definitions of [12].

Definition 7 (Symmetric Encryption Scheme). A symmetric encryption
scheme consists of two algorithms SE = (SE.Enc, SE.Dec) with an associated key
space K = {0, 1}λ, message space M⊆ {0, 1}∗ and ciphertext space C ⊆ {0, 1}∗.

1) The encryption algorithm, SE.Enc : K×M→ C, takes as input a key and
plaintext before outputting a ciphertext.

2) The decryption algorithm, SE.Dec : K× C →M, takes as input a key and
ciphertext before outputting the plaintext.

We expect that ciphertexts reliably decrypt to the original plaintext (given
the correct key).

Definition 8 (Correctness of Symmetric Encryption). A symmetric en-
cryption scheme is correct if, for all k ∈ K and m ∈M,

SE.Dec(k, SE.Enc(k,m)) = m

and the ciphertext output by SE.Enc is equal in length to the plaintext given to it.

Definition 9 (IND-CPA Security of Symmetric Encryption). A symmet-
ric encryption scheme SE provides indistinguishability under chosen-plaintext
attack (IND-CPA security) if any probabilistic polynomial-time adversary A has
7 They utilise additional encryption schemes in other parts of the system. We skip

these schemes since they are not part of our analysis.
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a negligible decision-advantage of winning the ExpIND-CPA
SE,nq,nch

(A) security experiment
detailed in Figure 4. The experiment is parameterised by ΛIND-CPA = (nq,nch),
for which nq limits the total number of queries the adversary may make while
nch limits the number of challenges (calls to SE.Enc for which m0 6= m1).

ExpIND-CPA
SE ΛIND-CPA(A)

1 : b←$ {0, 1}
2 : k ←$ K

3 : b′ ← AEnc(1λ)

4 : return b = b′

Enc(m0,m1)

1 : assert len(m0) = len(m1)

2 : c0 ← SE.Enc(k,m0)

3 : c1 ← SE.Enc(k,m1)

4 : return cb

Fig. 4: The IND-CPA security experiment for symmetric encryption.

Authenticated Encryption with Associated Data. We adapt the AEAD
definition introduced in [59] to our setting. In doing so, we must pay close attention
to the use of nonces in both the experiment and practice. The definition in [59]
forbids the re-use of nonces, requiring the adversary to be nonce-respecting. Since
the experiments allow for multiple challenges against the same plaintext, and the
encryption and decryption algorithms are deterministic, this restriction is needed
to ensure that the notions are satisfiable. WhatsApp takes a different approach to
ensuring that the same (n, k,m) combination is never reused. Secure messaging
applications typically derive a series of per-message keys, from which a nonce,
encryption key and authentication key are all generated, deterministically. In
this setting, the adversary does not have control over the nonce and, further, this
nonce is also opaque to the challenger. While we believe that such constructions
should be secure, since both the key and nonce are unique to each message, the
security notions above are not appropriate for this setting. We require a different
security notion.

In what follows, we define a one-time Authenticated Encryption with Asso-
ciated Data (AEAD) scheme. Such schemes are both deterministic and do not
require a nonce, with the caveat that any particular key may only be used to
encrypt a single message.

Definition 10 (One-Time AEAD Scheme). A one-time AEAD scheme
consists of two algorithms AEAD = (AEAD.Enc, AEAD.Dec) with an associated
key space K = {0, 1}λ, header space H ⊆ {0, 1}∗ (with a linear-time membership
test), message space M⊆ {0, 1}∗ and ciphertext space C ⊆ {0, 1}∗.

1) The encryption algorithm, AEAD.Enc : K ×H×M→ C, takes as input a
key, header and plaintext before outputting a ciphertext.

2) The decryption algorithm, AEAD.Dec : K ×H× C →M, takes as input a
key, header and ciphertext before outputting the plaintext.
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Definition 11 (Correctness of One-Time AEAD Schemes). A one-time
AEAD scheme is correct if, for all k ∈ K, h ∈ H and m ∈M,

AEAD.Dec(k, h,AEAD.Enc(k, h,m)) = m

and the ciphertext output by AEAD.Enc is equal in length to the plaintext given
to it (as measured by the linear-time computable length function l).

Definition 12 (IND$-CPA Security of One-Time AEAD Schemes).
A one-time AEAD scheme AEAD = (AEAD.Enc, AEAD.Dec) provides indis-
tinguishability from random under chosen plaintext attack (IND$-CPA) if any
probabilistic polynomial-time adversary A has a negligible advantage of winning
the ExpIND$-CPA

AEAD,1 (A) security experiment detailed in Figure 5.

Definition 13 (Existential Unforgeability of One-Time AEAD Schemes).
A one-time AEAD scheme AEAD provides existential unforgeability under chosen

message attack (EUF-CMA) if any probabilistic polynomial-time adversary A has
a negligible advantage of winning the ExpEUF-CMA

AEAD,1 (A) security experiment detailed
in Figure 5.

ExpEUF-CMA
AEAD,1 (A)

1 : k ←$ K; q ← ∅

2 : (h, c)← AEnc()

3 : m? ← AEAD.Dec(k, h, c)

4 : return m? 6= ⊥ ∧ (h, c) 6= q

Enc(h,m)

1 : assert q = ∅

2 : c← AEAD.Enc(k, h,m)

3 : q ← (h, c)

4 : return c

ExpIND$-CPA
AEAD,1 (A)

1 : b←$ {0, 1}
2 : k ←$ K
3 : m? ← ∅

4 : b′ ← AEnc()

5 : return b = b′

Enc(h,m)

1 : assert m? = ∅

2 : m? ← m

3 : c1 ← AEAD.Enc(k, h,m)

4 : c0 ←$ {0, 1}l(m)

5 : return cb

Fig. 5: The IND$-CPA and EUF-CMA security experiments for one-time AEAD.

We assume that WhatsApp’s combined use of AES-CBC and HMAC-SHA256,
as we describe in WA-AEAD, provides one-time IND$-CPA and EUF-CMA
security. Prior work [14, 12, 15] demonstrates that this is a reasonable assumption.

Signature Schemes. WhatsApp uses the Curve25519 variant of XEdDSA [57],
which we represent through XEd = (XEd.Gen,XEd.Sign,XEd.Verify) where XEd.Gen
is equivalent to XDH.Gen. We assume that XEd provides SUF-CMA security,
i.e. AdvSUF-CMA,A

XEd (λ) ≤ negl(λ) for any probabilistic polynomial-time algorithm
A, when the keys are used solely for digital signatures (see Remark 3).

Definition 14 (Signature Scheme). A signature scheme DS consists of three
probabilistic polynomial-time algorithms (DS.Gen,DS.Sign,DS.Verify) such that:

1) The key generation algorithm is a randomised algorithm that takes as input
a security parameter 1λ and outputs a pair (sk , pk), the secret key and
public key, respectively. We write (sk , pk)←$ DS.Gen(1λ).
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2) The signing algorithm takes as input a secret key sk , a message m and
outputs a signature σ. We write this as σ ←$ DS.Sign(sk ,m). The signing
algorithm may be randomised or deterministic.

3) The verification algorithm takes as input a public key vk , a signature σ and
a message m and outputs a bit b, with b = 1 meaning the signature is valid
and b = 0 meaning the signature is invalid. DS.Verify is a deterministic
algorithm. We write b← DS.Verify(vk , σ,m).

We require that except with negligible probability over (sk , pk)←$ DS.Gen(1λ), it
holds that DS.Verify(pk ,DS.Sign(sk ,m),m) = 1 for all m.

Definition 15 ((Strong) Existential Unforgeability under Chosen Mes-
sage Attack). A signature scheme provides (strong) existential unforgeability
under chosen message attack ((E/S)UF-CMA) if any polynomial-time adversary A
has a negligible advantage of winning the security experiment detailed in Figure 6.
We write AdvEUF-CMA,A

DS (λ) and AdvSUF-CMA,A
DS (λ).

(E/S)UF-CMA

1 : Q ← ∅; sk , pk ← DS.Gen(1λ) ; (m?, σ?)← AS(pk)

2 : return (µ?, ·) /∈ Q ∧ DS.Verify(pk , σ?,m?) = 1 // EUF-CMA

3 : return (m?, σ?) /∈ Q ∧ DS.Verify(pk , σ?,m?) = 1 // SUF-CMA

S(m)

1 : σ ← DS.Sign(sk ,m)

2 : Q ← Q∪ {(m,σ)}
3 : return σ

Fig. 6: The EUF-CMA and SUF-CMA security experiments for signature schemes.

Key Exchange. WhatsApp uses the XDH scheme for Curve25519-based Diffie-
Hellman (DH) key exchange [16], consisting of two algorithms: XDH.Gen, which
generates a Curve25519 key pair, and XDH, which performs DH key exchange
using the executing party’s private key and the communicating partner’s public
key.

WhatsApp uses XDH within the Signal protocol for secure pairwise messaging.
Thus, our security analysis does not interact with the scheme directly. Instead,
we model the underlying Signal pairwise channels as a multi-stage key exchange
protocol (MSKE) protocol [25, Definition 1], and make the assumption that
WhatsApp implements an MS-IND secure MSKE protocol. Our intermediate
result for the composed DM scheme, Theorem 2, and our main result, Theorem 5,
rely on [25, Thereom 1] which, in turn, relies on the Gap Diffie-Hellman (Gap
DH) assumption [56] for Curve25519 and models the KDFs as random oracles.

As described in Section 5, we modify the MSKE formalism for our setting.
We now briefly provide the (modified) syntax of such protocols, and refer the
reader to [25, Section 4.2] for a security definition. We describe these changes, and
justify the security of Signal pairwise channels within it, in prose in Section 5.



Formal Analysis of Multi-Device Group Messaging in WhatsApp 17

Definition 16 (Multi-stage Key Exchange Protocol). A multi-stage key
exchange protocol MSKE is a tuple of algorithms, along with a keyspace K and a
security parameter 1λ indicating the number of bits of randomness each session
requires. The algorithms are:

1) The MSKE.KeyGen() 7→ (pk , sk) algorithm generates and outputs the long-
term identity key pair (pk , sk) for a device.

2) The MSKE.MedTermKeyGen(sk) 7→ (spk , ssk) algorithm takes as input the
private long-term identity key sk , then generates and outputs a medium-
term key pair (spk , ssk).

3) The MSKE.EphemKeyGen(sk) 7→ (epk , esk) algorithm takes as input the
private long-term identity key sk , then generates and outputs an ephemeral,
single-use key pair (epk , esk).

4) The MSKE.Activate(sk , ssk , ρ, peerid) 7→ (π
′
,m′) algorithm takes as input

a long-term secret key sk , a medium-term secret key ssk , a role ρ ∈
{init, resp}, and optionally an identifier of its intended peer peerid and
outputs a state π

′ and (possibly empty) outgoing message m′.

5) The MSKE.Run(sk , ssk , π,m) 7→ (π
′
,m′) that takes as input a long-term

secret key sk , a medium-term secret key ssk , a state π and an incoming
protocol or control message m and outputs an updated state π

′ and (possibly
empty) outgoing protocol message m′.

3 Multi-Device Group Messaging in WhatsApp

In this section, we describe the results of our effort reverse engineering the
WhatsApp web client. In doing so, we identify and define the sub-protocols that,
together, make up its multi-device group messaging functionality. The description
in this section is a compressed and incomplete description of the functionality it
aims to describe. This is a necessary result of translating a large, production code
base into pseudocode amenable to cryptographic analysis. For example, we may
simplify data structures, algorithms or functionality. We do our best to signpost
such changes. In particular, we distinguish between the WhatsApp sub-protocols
and our formalism of these also by name, to highlight the distinction.

3.1 Device Setup and Management

We start by describing the facilities that WhatsApp provides for users to setup
and manage their devices. In WhatsApp, each user has a primary device (typically
a phone) and a number of companion devices (e.g., a laptop and a tablet). The
primary device creates and maintains the links between itself and its companion
devices. This is done through a variety of structures that, together, we call a
user’s multi-device state when describing WhatsApp. It consists of a signed list of
devices (containing both the primary device and each of their companion devices),
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as well as a device signature and account signature for each companion device.
This structure is public and, modulo any cryptographic controls, distributed and
controlled by the server. Thus, the cryptographic identity of the primary device
forms the user’s root of trust and represents them, cryptographically speaking.
Changing the primary device requires resetting the user’s cryptographic identity.

We collect this functionality into a sub-protocol, MD = (MD.Setup, MD.Link,
MD.Unlink, MD.Refresh, MD.Devices). We briefly describe these algorithms and
how they work together.

• isk , ipk ,md ←$ MD.Setup() generates a fresh cryptographic identity for a
user’s primary device, (isk , ipk), and initialises public state, md .

• md ← MD.Link(ρ, isk ,md , ipk?) takes as input the executing party’s role,
ρ, private identity key, isk , the current public device state, md , and the
public identity key of the other party, ipk?, before outputting an updated
multi-device state, md . It describes the linking process between a primary
and companion device. It is first executed by the primary device, in the
‘ρ = primary’ case, which outputs an updated multi-device state. This
state is then passed to the companion device, which executes the algorithm
in the ‘ρ = companion’ case, before outputting an updated multi-device
state.

• md ← MD.Unlink(ρ, isk ,md , ipk?) takes as input the executing party’s
role, ρ, private identity key, isk , public multi-device state, md , and the pub-
lic identity key of the companion being removed, ipk?, before outputting
the updated multi-device state.

• ipksX ← MD.Devices(ipkp, γ,md) takes as input the identity key of the
primary device, ρ, the minimum device list generation to accept, γ, and
the public multi-device state, md , before outputting the set of identity
representing the verified devices of the given primary device, ipksX (for
the given minimum device list generation and public device state).

• md ← MD.Refresh(ρ, isk ,md) takes as input the role of the executing
party, ρ, the private identity key of the primary device, isk , and the
public multi-device state before generating a new public multi-device state
(without changing the device composition) output as md .

We now proceed to describe each algorithm in the sections that follow (refer
to Figure 7 for a formal description).

Primary device setup. When a user first sets up their account, they do so by
setting up their primary device (as we describe in MD.Setup in Figure 7). The
primary device’s cryptographic identity consists of a Curve25519 key pair, the
identity keys ipkp and iskp, generated at device setup (see line 2). This key pair
is used for a variety of purposes across WhatsApp, such as managing a user’s
devices (as we describe here) and initialising pairwise channels (as described
in Section 3.2). The public key, ipkp, is uploaded to the server to register a
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MD.Setup()

1 : iskp, ipkp ←$ XDH.Gen()

2 : md ← Obj(MD, ipkp, [ipkp], 0,∅, [∅])

3 : md .σdl ← XEd.Sign(iskp, 0x0602 ‖ [ipkp] ‖ 0)
4 : return iskp, ipkp,md

MD.Link(ρ is
=primary, isk ,md , ipkc)

1 : MD, ipkp
is
=PK(isk), dl , γ, σdl ,∆← md ; dl ←app ipkc

2 : σp→c ← XEd.Sign(isk , 0x0600 ‖ γ + 1 ‖ ipkp ‖ ipkc)

3 : ∆[ipkc]← Obj(DR, γ + 1, ipkp, ipkc, σp→c,∅)

4 : σdl ← XEd.Sign(isk , 0x0602 ‖ dl ‖ γ + 1)

5 : md ← Obj(MD, ipkp, dl , γ + 1, σdl ,∆)

6 : return md

MD.Link(ρ is
=companion, isk ,md , ipkp)

1 : ipk ← PK(isk) ; MD, ipkp
is
= ipkp, dl , γ, σdl ,∆← md

2 : DR, γ, ipkp
is
= ipkp, ipkc

is
= ipk , σp→c, σc→p

is
=∅← ∆[ipk ]

3 : σc→p ← XEd.Sign(isk , 0x0601 ‖ γ ‖ ipkp ‖ ipk)
4 : ∆[ipk ]← Obj(DR, γ, ipkp, ipk , σp→c, σc→p)

5 : md ← Obj(MD, ipkp, dl , γ, σdl ,∆) ; return md

MD.Unlink(ρ is
=primary, isk ,md , ipkc)

1 : ipk ← PK(isk)

2 : MD, ipkp
is
= ipk , dl , γ, σdl ,∆← md

3 : dl ← [ipk∗ for ipk∗ in dl if ipk∗ 6= ipkc]

4 : σdl ← XEd.Sign(isk , 0x0602 ‖ dl ‖ γ + 1)

5 : md ← Obj(MD, ipk , dl , γ + 1, σdl ,∆)

6 : return md

MD.Devices(ipkp, γ,md)

1 : assert md .dl [0] = md .ipk = ipkp ∧ md .γ ≥ γ

2 : m← 0x0602 ‖md .dl ‖md .γ

3 : assert XEd.Verify(ipkp,m,md .σdl)

4 : ipksX ← {ipkp}
5 : for dr ∈ md .∆

6 : m0 ← 0x0600 ‖ dr .γ ‖ ipkp ‖ dr .ipkc

7 : m1 ← 0x0601 ‖ dr .γ ‖ ipkp ‖ dr .ipkc

8 : b0 ← XEd.Verify(ipkp,m0, dr .σp→c)

9 : b1 ← XEd.Verify(dr .ipkc,m1, dr .σc→p)

10 : b2 ← dr .ipkc 6= ipkp

11 : b3 ← (dr .ipkc ∈ md .dl) ∨(dr .γ > md .γ)

12 : if b0 ∧ b1 ∧ b2 ∧ b3 : ipksX ←∪ {dr .ipkc}
13 : return ipksX

MD.Refresh(ρ is
=primary, isk ,md)

1 : ipk ← PK(isk) ; MD, ipkp
is
= ipk , dl , γ, σdl ,∆← md ; σdl ← XEd.Sign(isk , 0x0602 ‖ dl ‖ γ + 1)

2 : md ← Obj(MD, ipk , dl , γ + 1, σdl ,∆) ; return md

Fig. 7: Pseudocode describing how WhatsApp manages user devices; the multi-
device sub-protocol MD.

server-controlled association between the logged-in user and their primary device.
The device proceeds to generate an initial version of the user’s multi-device state
, the contents of which we describe below. The multi-device state is signed with
the private identity key, iskp, before being uploaded to the server (see line 3).
While WhatsApp does take steps to secure the mapping from a user to their
primary identity key, this is outside the scope of our analysis8 and, as such, is
left out of our description.

Registering companion devices. To link a new companion device with their
account, a registration sub-protocol is executed between the companion and
primary devices. This is initiated in the user interface, where the companion
device presents a QR code that is scanned with the primary device. This code
communicates the companion device’s identity key as well as a linking secret.
The linking secret helps realise a SAS-style protocol [65] between the two devices,

8 The security experiment in Section 7.3 allows the challenger to provide a trusted map-
ping between user identities and their primary identity key ipkp without interference
from the adversary.
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ensuring the authenticity of later messages in the registration sub-protocol that
are routed through the server. We describe this process in Section 3.5.

The companion device starts by generating their own identity keys, isk c and
ipk c (see line 1 of WA.NewCompanionDevice in Figure 16). The companion and
primary device are linked together through two signatures, the account signature
and device signature. The primary device additionally maintains a signed list
of valid devices, known as the device list. The primary device allocates each
device a local identifier that indexes them within the device list. The primary
device is given an index of 0, the first companion device an index of 1, and so
on. The device list is constructed with the following fields: (a) non-cryptographic
user identifier, (b) timestamp, (c) the current maximum valid index, and (d) a
list of the valid device indices within the range {0, 1, . . . ,max}.9 Devices with
indices that are within this range but missing from the list of valid device indices
have been revoked. Our description replaces user identifiers, device identifiers
and device indices with the appropriate public key, under the assumption that
WhatsApp maintains these mappings correctly. We replace timestamps with a
counter: the device list generation. As such, our description captures the device
list as containing the primary device’s identity key, a list of valid companion
device identity keys, the current generation and its signature (see lines 1 and 5
of MD.Link(ρ

is
=primary, . . .) in Figure 7).

When a new companion device is registered, they are allocated the index max+
1 and an updated device list is generated and signed (see lines 1 and 2 of MD.Link(

ρ
is
=primary, . . .)). The primary device creates and signs an account signature: a

XEd25519 signature computed over the ‘0x0600’ prefix, the “linking metadata”
and the companion device’s identity key (line 3). Similarly, the companion device
creates and signs the device signature, an XEd25519 signature computed over
the ‘0x0601’ prefix, the linking metadata and primary device’s identity key (see
lines 2 and 3 of MD.Link(ρ

is
=companion, . . .)). This mutual signing ensures that

companion devices cannot be forcibly adopted by a malicious primary device
(and vice versa). The linking metadata is a structure consisting of the device’s
non-cryptographic identifier, an index into the device list for this device, and
a timestamp. As above, we replace the linking metadata with the companion
device’s identity key and the current device list generation. The account and
device signature are combined with other, non-cryptographic metadata, to form
its device record.

Revoking companion devices. To revoke a companion device, the primary device
generates a new device list without the target companion device (see MD.Unlink
in Figure 7). In order for other devices to enact this revocation, it is important
that they are made aware of this change.

9 WhatsApp supports accounts for which end-to-end encryption support is “hosted”.
This is for businesses managing customer facing accounts. The device list and linking
metadata also includes flags indicating this, however this is not something that we
consider.
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Refreshing the device list. Device lists expire after 35 days to ensure any device
revocations are enacted even in the case where the server is blocking distribution
of the updated device list. To ensure there is always a valid list, the primary
device will periodically update the signed device list (see MD.Refresh in Figure 7).
If all device lists have expired, clients will only communicate with the primary
device for that account. This design ensures that a device removal will be enforced
within a maximum of 35 days, allowing eventual recovery from compromised
companion devices.10

Verifying devices. WhatsApp clients keep track of the list of verified devices for
each user they communicate with (including themselves). Under normal operation,
the server will distribute changes to a user’s multi-device configuration, such
as the updated device list and the accompanying linking metadata, to all of
their own devices and the devices they communicate with. Changes to device
lists are primarily synchronised through notifications pushed by the server, but
may also be requested by clients when they detect that their list is out-of-date.
This is triggered in a variety of scenarios, such as when the client’s local copy of
the device list has expired, they receive a message from a device that is not in
their copy of the device list11, or they receive in-chat device consistency (ICDC)
information that does not match their local state (see below). Clients then rely
on this list when authenticating messages, or determining who they should send
messages to.

We now briefly describe the two mechanisms through which clients receive
updates to a user’s multi-device state.

1) A copy of the device list, accompanied by all relevant device records for that
generation. Ostensibly, these device list structures have been generated
and uploaded by the relevant user’s primary device. The server is expected
to send a notification to clients when a new copy of a communicating
partner’s device list becomes available (with the structure embedded
within the notification). Alternatively, this may be received as the result
of an explicit synchronisation request by the client. When receiving a
new copy of the device list, clients must decide how to merge it with the
existing information they hold.

2) A copy of a single device record that accompanies pre-key ciphertexts
from a Signal pairwise channel. As mentioned above, this is also known as
a device identity package. These are sent any time a device initialises a

10 Looking ahead, our model does not capture this automatic expiry of device lists.
Whilst our model is accurate within the 35 day window before a device list expires,
WhatsApp is stronger than what we capture in the model in this respect. We consider
this as a reasonable trade-off, in comparison to the alternative of including global
time in our model.

11 Whenever a device initiates a new pairwise Signal channel (see Section 3.2) through a
pre-key message, they attach their device record. Receiving a device record referencing
a newer device list than you have, or a device not currently present, can trigger the
synchronisation process.
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ICDC.Generate(ipkp,Γ ,mem,MD)

1 : meta ← Map{ }
2 : for ipkpr in mem :

3 : ipksX ← MD.Devices(ipkpr,Γ [ipkpr],MD[ipkpr])

4 : for ipkr in ipksX : meta[ipkr]← Obj(ICDC,Γ [ipkp],Γ [ipkpr])

5 : return meta

ICDC.Process(ipkp,Γ , ipks,meta)

1 : Γ [ipks]← max(Γ [ipks],meta.γs)

2 : Γ [ipkp]← max(Γ [ipkp],meta.γr)

3 : return Γ

Fig. 8: Pseudocode describing how WhatsApp’s ICDC information is computed.

new pairwise channel with another device, so that the recipient may verify
the sender.12 In this case, clients may accept device records that are from
future generations.

In both of these cases, the server has ultimate control over which device list
and device records the receiving client has access to during decryption. Thus,
we model the verification process as taking as input an adversarially controlled
md (consisting of the device list, its generation, signature and a list of device
records) and outputting a list of verified device identity keys for the given user.
It is up to this algorithm to determine which devices are valid for the given user
(identified by their primary device’s identity key) and for the given generation
(since companion devices may be revoked or expire).

The algorithm MD.Devices in Figure 7 details the process. A device is consid-
ered verified if there exists verifying account and device signatures (see lines 6
to 9) with an included timestamp that is greater than or equal to that of the
latest device list the verifying device has seen for that user (see lines 1 and 11).
Additionally, the device list signature must verify (see lines 2 to 3) and, if the two
timestamps are equal, the device must be present in this version of the device
list (see line 11). Note that, since the primary device’s identity key also identifies
the user, verification of primary devices is trivial insofar as we are able to map a
device’s cryptographic identity to a user’s cryptographic identity (see lines 4 and
10).13

In-Chat Device Consistency. To help communicating partners detect changes to
their multi-device state, clients include ICDC information whenever they send
pairwise Signal messages. Note that such information is not included in group
messaging messages (described in Section 3.3). This information is included within
the ciphertext, helping to detect cases where a malicious server may withhold
multi-device state updates from clients: if the server allows application messages
to be sent, they allow clients to detect changes to multi-device state.
12 Note that the whitepaper does not mention the inclusion of device records alongside

pre-key messages.
13 Verifying that the user’s cryptographic identity maps to the person they expect to

communicate with is not trivial. Section 3.4 discusses WhatsApp’s approach to this
problem: users verify each other’s primary device identities either directly (through
out-of-band verification) or through the key transparency functionality. This is outside
the scope of our formal analysis in Section 7.
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We describe this behaviour through two algorithms, ICDC = (ICDC.Generate,
ICDC.Process).

• meta ← ICDC.Generate(ipkp,Γ ,mem,MD) takes as input the primary
device’s identity key, ipkp, the store of minimum device list generations,
Γ , a list of group members, mem, and the executing party’s public multi-
device state md then prepares the per-recipient metadata, output as
meta.

• Γ ← ICDC.Process(ipkp,Γ , ipks,meta) takes as input the executing party’s
primary identity key, ipkp, the store of minimum device list generations,
Γ , the primary identity key of the sender, ipks, and the ICDC metadata
accompanying a message. It calculates the new minimum device list genera-
tion for both the executing party and the sending party, before outputting
an updated store, Γ .

WhatsApp’s whitepaper describes the ICDC information as including: (a) The
timestamp of the sender’s most recent signed device list. (b) A flag indicating
whether the sender has any companion devices linked. (c) The timestamp of
the recipient’s most recent signed device list. (d) A flag indicating whether the
recipient has any companion devices linked. Differing slightly from the whitepaper,
the WhatsApp web client we investigated included (a) the timestamp of the
sender’s most recent signed device list, (b) a list of the sender’s current key
indices, (c) the sender’s key hash14, (d) the timestamp of the recipient’s most
recent signed device list, (e) a list of the recipient’s current key indices, and
(f) the recipient’s key hash.

The inclusion of ICDC information about the recipient15 user allows the
sender’s other devices to check whether they have a consistent view of the
recipient’s multi-device state (since the sender’s devices are also recipients of
such messages, albeit not the recipient in this context).

Further, the code we investigated only makes use of the device list timestamp
when processing and reacting to ICDC updates. Thus, our description and security
analysis model the ICDC as containing the most recent device list generations
of both the sender and recipient (see line 5 of ICDC.Generate in Figure 8).
Upon receiving ICDC information in a message, the recipient will check that
it is consistent with their view of the sender’s multi-device state. If not, the
whitepaper claims that clients will accelerate the device list expiration to either
48 hours (or keep the time that is already remaining, if it is less than 48 hours).
We could not find evidence of such a delay in the client in our investigation.

14 The key hash is a hash of all the primary and public identity keys associated with an
account. The binary representation of each public key are concatenated together and
piped through the SHA256 function.

15 When a message is being sent to another user, but this ciphertext is distributing
information to a companion device of the sender, then “recipient” refers to the
primary device identity of the other user (not the sender) [66].
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DM.Init(isk , ne)

1 : // Generate and sign medium-term pre-key

2 : spk , ssk ←$ SIGNAL.MedTermKeyGen()

3 : σspk ← XEd.Sign(isk , 0x05 ‖ spk)
4 : // Generate ephemeral/one-time keys

5 : for i = 0, 1, 2, . . . , ne − 1 :

6 : epk i, esk i ←$ SIGNAL.EphemKeyGen()

7 : esks ← {esk i : 0 ≤ i < ne}
8 : epks ← {epk i : 0 ≤ i < ne}
9 : // Key bundle for distribution by server

10 : skb ← Obj(SKB,PK(isk), spk , σspk , epks)

11 : // Initialise our private DM protocol state

12 : ssts ← Map{} // Signal session states by ipk

13 : pst ← Obj(DM, isk , ssk , esks, ssts)
14 : return pst , skb

DM.Dec(pst , skbs, cP )

1 : if cP .ckex .type = pkmsg :

2 : pst ,m← ∗DM.DecPreKeyMsg(pst , skbs, cP )

3 : else :

4 : pst ,m← ∗DM.DecNormalMsg(pst , skbs, cP )

5 : return pst ,m

DM.Enc(pst , skbr,m)

1 : // Unpack our protocol state and recipient’s key bundle

2 : DM, isk , ssk , esks, ssts ← pst

3 : ipkr, spkr, σspk,r, [epkr]← skbr

4 : // (server allocates a single ephemeral key epkr from list)

5 : // Initiate new Signal session if we have no pre-existing one

6 : if (ssts[ipkr] = ∅) :

7 : assert XEd.Verify(ipkr, 0x05 ‖ spkr, σspk,r)

8 : sst , · ←$ SIGNAL.Activate(isk , ssk , init, ipkr)

9 : sst , ckex ←$ SIGNAL.Run(isk , ssk , sst , (spkr, σspk,r, epkr))

10 : else : // Otherwise use the active matching session

11 : sst ← ssts[ipkr][0]

12 : sst , ckex ←$ SIGNAL.Run(isk , ssk , sst ,∅)

13 : assert sst .status[sst .stage] = accept

14 : cmsg ←WA-AEAD.Enc(sst .k[sst .stage], ckex ,m)

15 : ssts[ipkr]←
∗DM.UpdateSession(ssts[ipkr],∅, sst)

16 : pst ← Obj(DM, isk , ssk , esks, ssts)

17 : return pst , (ckex , cmsg)

Fig. 9: Pseudocode describing how WhatsApp uses the Signal two-party pro-
tocol to build secure channels between pairs of devices, its direct messaging
sub-protocol DM; see Figure 10 for descriptions of ∗DM.DecNormalMsg and
∗DM.DecPreKeyMsg.

Instead, clients seem to immediately invalidate the relevant device records.16 In
our description and security analysis, we capture this by having the client set the
minimum device list generation for the relevant user to that which is in the ICDC
information, if it is greater than the client’s current value (see ICDC.Process in
Figure 8). Next time the list of verified devices is checked, they will use this new
minimum device list generation (as input into MD.Devices).

3.2 Pairwise Channels

To secure pairwise channels, WhatsApp uses X3DH [52] for the initial key
exchange and the Double Ratchet [51] from there onwards. The device identity
key, (isk , ipk), is used as a contribution towards the X3DH key exchange in
addition to signing the medium-term signed pre-key. Note that the signature over
the pre-key is computed over its raw serialised public key, and without explicit
domain separation (other than a preceding byte encoding that it is an XDH key).

WhatsApp clients maintain multiple active pairwise channels between them-
selves and other devices. Whilst this is not documented by WhatsApp, our
analysis confirms that its implementation largely matches the session manage-
ment design of Signal as documented in the Sesame specification [53] and recently
16 Since we choose not to model time in Section 7, this inconsistency does not affect

our analysis.
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∗DM.DecPreKeyMsg(pst , skbs, cP )

1 : // Unpack the DM ciphertext into its requisite pieces
2 : ckex , cmsg ← cP

3 : // Unpack protocol state and sender’s key bundle

4 : DM, isk , ssk , esks, ssts ← pst

5 : SKB, ipks, spks, σspk,s, epkss ← skbs

6 : // Look for session with matching initiator ephemeral pk

7 : k, sst ← ∗DM.FindSession(ssts[ipks], ckex .epk init)

8 : if sst = ∅ : // for new (to us) session

9 : [esk ]← [esk ′ in esks if ckex .epk resp = PK(esk ′)]

10 : sst , · ←$ SIGNAL.Activate(isk , ssk , resp, ipks, esk)

11 : sst , · ←$ SIGNAL.Run(isk , ssk , sst , ckex )

12 : esks ← [esk ′ in esks if ckex .epk resp 6= PK(esk ′)]

13 : else : // for existing session

14 : sst , · ←$ SIGNAL.Run(isk , ssk , sst , ckex )

15 : assert sst .status[sst .stage] = accept

16 : m←WA-AEAD.Dec(sst .k[sst .stage], ckex , cmsg)

17 : assert m 6= ⊥
18 : ssts[ipks]←

∗DM.UpdateSession(ssts[ipks], k, sst)

19 : pst ← Obj(DM, isk , ssk , esks, ssts)
20 : return pst ,m

∗DM.DecNormalMsg(pst , skbs, cP )

1 : ckex , cmsg ← cP

2 : DM, isk , ssk , esks, ssts ← pst

3 : SKB, ipks, spks, σspk,s, epkss ← skbs

4 : // Try to decrypt using each session

5 : // in turn (in order of most recent use)

6 : for k, sst enum in ssts[ipks] :

7 : sst , · ←$ SIGNAL.Run(isk , ssk , sst , cP )

8 : status = sst .status[sst .stage]

9 : if status 6= accept : continue

10 : m←WA-AEAD.Dec(

sst .k[sst .stage], ckex , cmsg)

11 : if m = ⊥ : continue // failure

12 : else : break // success

13 : assert m 6= ⊥ // all failed

14 : // Save as the active session (at index 0)

15 : ssts[ipks]←
∗DM.UpdateSession(

ssts[ipks], k, sst)

16 : pst ← Obj(DM, isk , ssk , esks, ssts)
17 : return pst ,m

∗DM.FindSession(ssts, epk init)

1 : match ← (∅,∅)

2 : for k, sst enum in ssts

3 : if sst .epk init = epk init :

4 : assert match = (∅,∅); match ← (k, sst)

5 : return match

∗DM.UpdateSession(ssts, k, sst)

1 : if k 6= ∅ :

2 : return [sst ] ‖ ssts[0→ k − 1] ‖ ssts[k + 1→ 39]

3 : else :
4 : return [sst ] ‖ ssts[0→ 39]

Fig. 10: Helper functions completing our description of DM (cf. Figure 9).

analysed in the symbolic setting [30]. Maintaining multiple underlying sessions
can help with issues such as desynchronisation, e.g. if two devices initialise a
session at the same time, but undermines PCS guarantees [28, 30].

We capture WhatsApp’s pairwise device-to-device communications, including
their use of multiple channels, with the scheme DM = (DM.Init, DM.Enc, DM.Dec)
in Figure 9. The external interface of such a scheme aims to allow pairs of devices to
securely exchange messages, all the while managing a number of underlying Signal
pairwise channels internally. It initialises the channels, selects the appropriate
channel to use, and rotates medium- and short-term keys as needed.

• pst , skb ←$ DM.Init(isk , ne) takes as input a private identity key, isk , and
the number of ephemeral keys to generate, ne . It proceeds by generating a
key bundle consisting of a medium-term key pair, (ssk , spk), and ne single-
use keys, {esk i, epk i}0≤i<ne

. It initialises its private state, pst , consisting
of the private parts of these keys, which it outputs alongside the key
bundle.
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WA-AEAD.Enc(mk ,meta,m)

1 : ek ← mk [0→ 31B]; hk ← mk [32→ 63B]

2 : iv ← mk [64→ 79B]

3 : c← ipks ‖ ipkr ‖ AES-CBC.Enc(ek , iv ,m)

4 : ch ← Obj(SIG-HMAC,meta, c)

5 : τ ← HMAC(hk , ch)[0→ 7B]

6 : return c ‖ τ

WA-AEAD.Dec(mk ,meta, c)

1 : ek ← mk [0→ 31B]; hk ← mk [32→ 63B]

2 : iv ← mk [64→ 79B]

3 : c ‖ τ ← c; ch ← Obj(SIG-HMAC,meta, c)

4 : assert τ = HMAC(hk , ch)[0→ 7B]

5 : ipks ‖ ipkr ‖ c← c

6 : m← AES-CBC.Dec(ek , iv , c)

7 : return m

Fig. 11: Pseudocode describing the AEAD scheme used by WhatsApp when
sending messages over pairwise channels, WA-AEAD.

• pst , c ← DM.Enc(pst , skbr,m) takes as input the private state, pst , the
key bundle of the recipient, skbr, and the message to be sent, m. It outputs
an updated private state, pst , and a ciphertext, c.

• pst ,m← DM.Dec(pst , skbs, cP ) takes as input the private state, pst , the
key bundle of the sender, skbs, and a ciphertext, m. It outputs an updated
private state, pst , and the decrypted message, m.

WhatsApp uses the (non-cryptographic) device identifier, alongside the initia-
tor’s one-time key, to store and locate existing pairwise sessions. In contrast, our
description addresses sessions using the device identity key in place of the device
identifier. It follows that our analysis relies on WhatsApp correctly maintaining
this mapping, something that is required by Sesame [53] but not in [66].

DM.Init captures a device’s initial setup. It takes the devices secret long-term
identity key and the number of ephemeral keys to generate as input, then creates
medium- and short-term key pairs before setting up the protocol state (see lines
1 to 6). It outputs the private protocol state pst (see lines 8 and 9) and a bundle
of public keys for distribution by the server, skb, which includes the long-term
identity key, signed pre-key with its signature, and a list of ephemeral pre-keys
(see line 7). WhatsApp allows clients to upload fresh sets of ephemeral key pairs,
allowing key rotation to continue indefinitely. Our modelling, and the pseudocode
in Figure 9, does not capture this ability. We discuss this decision further in
Section 5. DM.Enc encrypts a message, taking as input an existing protocol state,
pst , the recipients key bundle, skbr, and the message as input before returning
an updated protocol state, pst , and the ciphertext, cP . The device unpacks the
recipient’s key bundle and locates any existing sessions with the recipient. If no
such session exists, the signature on the recipient’s medium-term key is verified
before initialising a new session using the recipients identity key, medium-term
key and one of their ephemeral keys (see lines 3 to 6). If one or more matching
sessions do exist, they utilise the most recently used session. In both cases, they
use the fresh key output by the underlying Signal two-party protocol as input
into an AEAD scheme before saving any changes to the session state (lines 10 to
12). It is important that the encryption algorithm outputs both the encrypted
message, cmsg , and the key exchange ciphertext, ckex , which allows the underlying
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channel to perform the continuous key exchange. DM.Dec decrypts a message,
taking as input an existing protocol state, pst , the senders key bundle, skbs, and
the ciphertext to be decrypted, cP , before returning an updated protocol state,
pst , and the decrypted message m. If decryption fails due to invalid input or
mismatched identities, it outputs an updated protocol state, pst , and an empty
message, ∅. Decryption of pre-key and normal pairwise ciphertexts are handled
separately, in ∗DM.DecPreKeyMsg and ∗DM.DecNormalMsg respectively. In the
case of a pre-key message, clients search for an existing session with a matching
initialising ephemeral key (see line 4 of ∗DM.DecPreKeyMsg). If such a session
does not exist, the client initialises a new session after ensuring that the chosen
responding ephemeral key is in fact one of their own (and has not previously
been used). They proceed to execute the protocol, deriving the appropriate
per-message key, using either the newly initialised session (see line 9) or the
pre-existing session that was previously found (see lines 10 and 11). The key
is used to authenticate and decrypt the application message contained in cmsg .
In the case of normal messages, the client fetches the sessions for the claimed
sending device and applies trial decryption17 to each session in the order of most
recent use (see lines 4 to 11 of ∗DM.DecNormalMsg). In all cases, the session
store for the communicating device is updated with the new session state, storing
up to 40 sessions ordered by most recent use (see ∗DM.UpdateSession).

Note that this work does not aim to analyse or verify WhatsApp’s imple-
mentation of Signal pairwise channels; instead, we focus on how the session
management layer impacts the security guarantees of the composed protocol.
Thus, we describe and analyse DM’s constituent algorithms without including
pseudocode for the SIGNAL scheme. In our analysis, we utilise the multi-stage key
indistinguishability security model (MS-IND) and results of [25], modelling the
underlying Signal pairwise channels as a MSKE [25, Definition 1] with SIGNAL
= (SIGNAL.KeyGen, SIGNAL.MedTermKeyGen, SIGNAL.Activate, SIGNAL.Run).
Ciphertexts contain a ‘type’ field that is set to the value prekey when it contains
a pre-key message. Since WhatsApp uses the identity key for purposes outside
of the SIGNAL scheme, this formalisation cannot be fully separated from its
use in WhatsApp. For this reason DM does not make use of Signal’s initial key
generation function SIGNAL.KeyGen. Additional minor changes are required for
our security analysis in Section 5 because our work targets message security
rather than key security. Thus, we must include WhatsApp’s AEAD scheme in
our analysis, which we denote as WA-AEAD and detail in Figure 11.

Direct Messaging. Our modelling and security analysis does not cover the direct
messaging component of WhatsApp. Briefly, WhatsApp uses the secure pairwise
channels (described in Section 3.2) to exchange direct messages between users.
This is even the case in the multi-device setting. Here, clients use the multi-device
components (described in Section 3.1) to determine the list of devices representing

17 For the interested reader, the use of trial decryption is not unique to WhatsApp.
Signal seems to do something similar (see ‘decrypt_message_with_record’ in libsignal,
for example), as does Matrix [3, 2].

https://github.com/signalapp/libsignal/blob/701895d541607b3eada37c9fdb5870fd1e7e6d01/rust/protocol/src/session_cipher.rs#L469-L505
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their communicating partner, then distribute the same application message over
multiple independent Signal two-party channels.

3.3 Group Messaging

Group messaging is achieved through the Sender Keys multiparty extension to the
Signal two-party protocol. Introduced in [50], and previously analysed within [8],
Sender Keys utilises existing secure channels between pairs of participants to
distribute per-sender sessions between members of the group. When a device first
sends a message to the group, they generate a new session and distribute the
keys necessary to authenticate and decrypt messages to the other devices in the
group. These sessions consist of a signing key (for the purposes of authentication)
and a symmetric secret (for the purposes of confidentiality), the latter of which
is ratcheted forward to derive unique key material for each message. Each device
participating in the group maintains their own session which they use to send
messages to the group. We split our examination of Sender Keys into two. First,
we consider a single session that provides a secure unidirectional channel between
one sending device and many recipient devices, captured through the UNI scheme.
Such channels are expected to provide authentication, confidentiality and forward
secrecy for a linear sequence of messages. Second, we consider how these individual
sessions are distributed through an untrusted network, using the aforementioned
pairwise channels, as well as the rotation of individual sessions as the list of
intended recipients changes. We capture this functionality in the SK scheme.

Consider the UNI scheme described in Figure 12. It consists of four algorithms,
UNI = (UNI.Init, UNI.Enc, UNI.Dec, UNI.GenInbound), that describe a forward
secure channel from one sender to many recipients. We briefly describe the
interface of these algorithms before describing their behaviour in detail below.

• ustout , ust in ←$ UNI.Init() generates a new unidirectional Sender Keys
session and outputs the outbound session, ustout , and inbound session,
ust in .

• ustout , c← UNI.Enc(ustout ,m) takes as input an outbound session, ustout ,
and plaintext message, m, before outputting an updated outbound session,
ustout , and the resulting ciphertext, c.

• ust in ,m ← UNI.Dec(ust in , (cU , σU )) takes as input an inbound session,
ust in , and signed ciphertext, (cU , σU ), before outputting an updated
inbound session, ust in , and the resulting message, c.

• ust in ← UNI.GenInbound(ustout) takes as input an outbound session,
ustout , and calculates its inbound counterpart, ust in .

The sender initialises a new session with UNI.Init. The device generates the
session identifier and sets the initial message index to zero (see line 1). They then
generate the initial symmetric key material, the chain key ck , and a fresh signing
key pair, gsk and gpk (see line 2). The device constructs an outbound session
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state, consisting of the session identifier, message index, chain key and signing
key (see line 3). The device additionally constructs an inbound sessions state,
consisting of the session identifier, message index, chain key and verification key
(see line 4). The algorithm outputs an outbound, kept by the sender, and an
inbound session, distributed to the intended recipients.

The sender can encrypt new messages by calling UNI.Enc with the outbound
session state and plaintext. To encrypt a message, the message index is incre-
mented (see line 2) before deriving the per-message key material and ratcheting
the chain key forward (see lines 3 and 4).18 The per-message key material, mk,
is stretched using HKDF to derive an initialisation vector and encryption key for
the AES-CBC encryption (lines 5 to 7). The resulting ciphertext, session identifier
and message index are signed with the signing key, gsk (line 9).19 The outbound
session state is updated (line 10) and the signed ciphertext is distributed to the
recipients.

The UNI.Dec algorithm describes how messages are decrypted. Clients start by
ensuring that the session identifier of the ciphertext and local session state match
(line 2). We additionally include a check that enforces in-order message decryption.
This is inaccurate, since WhatsApp will perform out-of-order decryption for these
sessions. It does so by caching the per-message key material for up to 2000 skipped
messages. The device proceeds to verify the signature using gpk from their local
state. If it passes, they proceed to derive the per-message key material before
ratcheting the chain key forward (lines 4 to 5). The key material is stretched
using HKDF to derive the initialisation vector and encryption key for AES-CBC
(line 6 to 8). Finally, the inbound session state is updated, saving the new chain
key and updating the message index to reflect that of the next message to be
decrypted.

We additionally include the UNI.GenInbound algorithm, which describes how
clients derive an inbound session from their own copy of the outbound session.
This is used by the sending session when they need to distribute the key material
to new group members.

We now describe how WhatsApp clients distribute and manage the sessions
for unidirectional channels, through the SK = (SK.Init, SK.Add, SK.Rem, SK.Enc,
SK.Dec) scheme which we detail in Figure 13.

18 We note a minor mistake in the whitepaper regarding key derivation. They claim that
the message key is an 80 byte value with 16 for the IV, 32 for AES key and 32 for a
MAC key. But they only show it being derived as HMAC-SHA256. In practice, the
message key is an HMAC-SHA256 value (derived from the ck) which they then apply
HKDF-SHA256 to, for which the output length depends on the context. In particular,
group messages do not use a MAC key so they only extract 50 bytes, while pairwise
messages need a MAC key so they extract 80 bytes. It is not clear why 50 bytes are
extracted while 48 bytes are used.

19 Note that, while Sender Keys ciphertexts contain a protocol version field that is
inside the signature, we do not include this field in our description or formal analysis.
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UNI.Init()

1 : usid ←$ {1, 2, . . . , 231}; z ← 0

2 : ck ←$ {0, 1}256; (gsk , gpk)←$ XDH.Gen()

3 : ustout ← Obj(UNI-OUT, usid , z , ck , gsk)

4 : ust in ← Obj(UNI-IN, usid , z , ck , gpk)

5 : return (ustout , ust in)

UNI.Enc(ustout ,m)

1 : UNI-OUT, usid , z , ck , gsk ← ustout
2 : z ← z + 1

3 : mk ← HMAC(ck , 0x01)

4 : ck ← HMAC(ck , 0x02)

5 : k ← HKDF(∅,mk , WhisperGroup, 50B)

6 : iv , ek ← k[0→ 15B], k[16→ 47B]

7 : c← AES-CBC.Enc(ek , iv ,m)

8 : cU ← Obj(UNI-CTXT, usid , z , c)

9 : σU ← XEd.Sign(gsk , cU )

10 : ustout ← Obj(UNI-OUT, usid , z , ck , gsk)

11 : return ustout , (cU , σU )

UNI.GenInbound(ustout)

1 : UNI-OUT, usid , z , ck , gsk ← ustout

2 : ust in ← Obj(UNI-IN, usid , z , ck ,PK(gsk))
3 : return ust in

UNI.Dec(ust in , (cU , σU ))

1 : UNI-IN, usid , z , ck , gpk ← ust in
2 : assert usid = cU .usid ∧ z = cU .z

3 : assert XEd.Verify(gpk , cU , σU )

4 : mk ← HMAC(ck , 0x01)

5 : ck ← HMAC(ck , 0x02)

6 : k ← HKDF(∅,mk , WhisperGroup, 50B)

7 : iv , ek ← k[0→ 15B], k[16→ 47B]

8 : m← AES-CBC.Dec(ek , iv , cU .c)

9 : assert m 6= ⊥
10 : z ← z + 1

11 : ust in ← Obj(UNI-IN, usid , z , ck , gpk)

12 : return (ust in ,m)

Fig. 12: Pseudocode description of the unidirectional channels used by WhatsApp
for group messaging, the ratcheted symmetric signcryption scheme UNI.

• skst ←$ SK.Init(ρ, ipk ,mem) initialises a new Sender Keys session with
the role, ρ, the executing device’s public identity key, ipk , and a list of
participants, mem.

• skst , pst ,
−→
cP , (cU , σU ) ← SK.Enc(skst , pst ,SKB,meta,m) sends a mes-

sage to the group. It takes as input a sending session state, skst , pairwise
session state, pst , a store of key bundles, SKB, the ICDC metadata, meta,
and the message to be sent, m. It outputs an updated sending session
state, skst , and pairwise session state, pst , as well as a list of pairwise
ciphertexts to (possibly) distribute the Sender Keys session, −→

cP , and the
signed Sender Key ciphertext, (cU , σU ).

• skst , pst ,meta,m ← SK.Dec(skst , pst , skbs, cP , (cU , σU )) receives a mes-
sage from the sending session. It takes as input a recipient session state,
skst , pairwise session state, pst , the sender’s key bundle, skbs, an optional
key distribution ciphertext, cP , and the signed Sender Keys ciphertext,
(cU , σU ). It outputs an updated recipient session state, skst , and pairwise
session state, pst , as well as the ICDC metadata, meta, and the plaintext
message, m.

• skst ← SK.Add(skst , ipk?) adds a new device to a sending session. It
takes as input the sending session state, skst , and the new device’s public
identity key, ipk , then outputs an updated sending session state, skst .
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• skst ← SK.Rem(skst , ipk?) removes a device as a recipient from a sending
session. It takes as input the sending session state, skst , and the device’s
public identity key, ipk , then outputs an updated sending session state,
skst .

As described above, each member of the group generates and maintains their
own unidirectional channel, for which they use the outbound session to send
messages to the group. The inbound sessions, which allow the other members
to decrypt and verify sent messages, are then distributed over pairwise channels
using the existing pairwise channels (see Section 3.2). Membership changes are
implemented lazily. That is, when a recipient is added or removed, the sender
will take note of the change then implement the necessary key rotation when
the next message is sent. When a user or device is added to the group, they are
sent a copy of the inbound session with the current chain key, allowing them to
decrypt all future messages but none that have been sent previously (see SK.Add
and lines 8 to 12 of SK.Enc).20 When a user or device is removed from the group,
the session owner must generate a new session and distribute it to the remaining
members (see SK.Rem and lines 2 to 7 of SK.Enc). This ensures that devices
associated with the removed member cannot decrypt future messages using their
copy of the inbound session.

We would expect clients to enforce group membership by deleting inbound
sessions originating from a user that has been removed from the group. We
were not able to find evidence of this behaviour during our investigation. It is
possible that group membership is enforced non-cryptographically.21 This could
be implemented, for example, by authenticating the sender and checking their
identity against the server-provided member list before accepting the message.22

Our description of Sender Keys maintains a focus on unidirectional channels
even as we lift to the session level and the over-arching group messaging protocol.
As such, each instantiation of the protocol has a predefined role of either sender
or receiver. Composed together, with one SK session per group member, we can
see how the protocol forms a logical “group chat”. Note, however, that Sender
Keys sessions are not cryptographically bound to a “logical group”. This means,
Bob can take an inbound session from Alice in group G and distribute it as an
inbound session for himself in group H.

As can be seen in Figure 13, WhatsApp’s implementation keeps the five most
recent Sender Keys sessions they have received from a particular device for a
particular group. This is likely to ensure that any out-of-order, delayed or missed
ciphertexts from a previous session can be decrypted. Note that senders do not

20 The level of forward security provided in this architecture depends on the properties
of the underlying unidirectional channel. In the case of Sender Keys as it is used by
WhatsApp and Signal, this provides forward secrecy but not forward authenticity [9,
8, 2, 3].

21 Since our inspection of the implementation was not exhaustive, we are not confident
in claiming that this functionality does not exist.

22 Since WhatsApp clients trust the server to provide the group member list, something
which is reflected in our security model, this issue does not appear in our analysis.
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SK.Init(ρ
is
=snd, ipk ,mem)

1 : new← [ ]; refresh?← false; t ← 0; ustout = ∅
2 : skst ← Obj(SK-SND,mem,new, refresh?, t , ustout)
3 : return skst

SK.Enc(skst
is
=Obj(SK-SND, · ), pst ,SKB,meta,m)

1 : SK-SND,mem,new, refresh?, t , ustout ← skst ;
−→
cP ← [ ]

2 : if (ustout = ∅) ∪ (refresh? = true) :

3 : ustout , ust in ←$ UNI.Init()

4 : t ← t + 1

5 : for (ipkr in mem) :

6 : M ← Obj(SK-PTXT,meta[ipkr],Obj(UNI-IN, ust in))

7 : pst , cP ←$ DM.Enc(pst ,SKB[ipkr],m);
−→
cP ←app cP

8 : else : // If not, distribute the existing session to new members.

9 : ust in ← UNI.GenInbound(ustout)

10 : for (ipkr in new) :
11 : M ← Obj(SK-PTXT,meta[ipkr],Obj(UNI-IN, ust in))

12 : pst , cP ←$ DM.Enc(pst ,SKB[ipkr],m);
−→
cP ←app cP

13 : new← [ ]; ustout , (cU , σU )← UNI.Enc(ustout ,M)

14 : skst ← Obj(SK-SND,mem,new, refresh?, t , ustout)
15 : return skst , pst ,

−→
cP , (cU , σU )

SK.Init(ρ
is
=rcv, ipks,∅)

1 : usts in = [ ] // sent with first ciphertext

2 : skst ← Obj(SK-RCV, ipks, t , usts in)

3 : return skst

SK.Dec(skst
is
=Obj(SK-RCV, · ), pst , skbs, cP , (cU , σU ))

1 : if (cP 6= ∅) :

2 : assert skbs.ipk = skst .ipks

3 : pst ,M ← DM.Dec(pst , skbs, cP )

4 : if (len(skst .usts in) > 4) :

5 : skst .usts in ← skst .usts in [0→ 3] ‖ [M.ust in ]

6 : else :
7 : skst .usts in ←app M.ust in
8 : skst .t ← skst .t + 1
9 : meta ←M.meta

10 : else : meta ← ∅
11 : i, ust in ← ∗SK.FindSession(skst .usts in , cU .usid)

12 : ust in ,m← UNI.Dec(ust in , (cU , σU ))

13 : skst .usts in [i]← ust in

14 : return skst , pst ,meta,m

SK.Add(skst
is
=Obj(SK-SND, · ), ipk∗)

1 : skst .mem←app ipk∗

2 : skst .new←app ipk∗

3 : return skst

SK.Rem(skst
is
=Obj(SK-SND, · ), ipk∗)

1 : skst .mem← skst .mem \ [ipk∗]

2 : if ipk∗ in skst .new :

3 : skst .new← skst .new \ [ipk∗]

4 : else : skst .refresh?← true

5 : return skst

∗SK.FindSession(usts in , usid)

1 : i← 0
2 : for (ust in in usts in) :

3 : if (ust in .usid = usid) :

4 : return (i, ust in)

5 : i← i+ 1
6 : assert false

Fig. 13: Pseudocode describing WhatsApp’s variant of the Sender Keys protocol,
capturing rotation of unidirectional channels to manage recipients.

keep old copies of their outgoing sessions. Nonetheless, this decision results in
a slower recovery of security after compromise of Sender Keys session state.
This issue can be effectively and efficiently mediated by including the number of
messages sent in the last session when initiating a new session. The recipient may
then derive the message key for each of the missing messages from the previous
session, allowing it to safely destroy the chain key. A similar set of issues exists
for Signal pairwise channels, for which a similar improvement has previously
been suggested [34].

Group management. Group membership is managed through control messages
protected by transport security between client and server but without end-to-end
guarantees. Thus, group membership is controlled by the server [60, 9, 8].

While group membership is determined at the user-level, this is implemented
in the cryptography by adding and removing devices from the group. Our descrip-
tion in Section 3.5 reflects the former, while our security analysis in Section 7
necessarily reflects the latter. Clients trust the server to provide a list of users
that are members of the group, but verify the list of companion devices for each
of those users. Additionally, each client may have a different view of the group
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membership; WhatsApp provides no guarantees in this respect. As such, we
avoid capturing logical groups in our security analysis. It is for these reasons
that the model we choose to apply captures messaging sessions at the level of
unidirectional channels, and group membership at the level of devices rather
than users while expecting that clients maintain eventually consistent views of a
user’s device composition.

Add-on Sender Keys. WhatsApp supports Community Announcement Groups.
These are group chats where members can have one of two roles. Administrators
are able to post messages, while normal group members may only react to existing
messages. Under this constrained interaction model, WhatsApp’s design aims
to keep the PCS guarantees that we get from Sender Keys, whilst requiring
that only administrators rotate their sender key when someone leaves the group
(rather than all the group’s members). To achieve this, WhatsApp introduces
a second sender key, the add-on sender key. These work similarly to the sender
keys normally used in group chats, however they are restricted to particular
interactions (such as reactions to existing messages). We do not consider this
functionality in this work.

Attachments. WhatsApp allows users to attach media (and other files) as en-
crypted blobs distributed alongside a message. We describe this functionality
with the ATTACH.Enc and ATTACH.Dec algorithms.

• mptr , c
′, τ ←$ ATTACH.Enc(m, t) encrypts an attachment, m, of the given

type, t, and outputs a pointer, mptr , the attachment ciphertext, c′, and
an authentication tag, τ .

• m ← ATTACH.Dec(mptr , c
′, τ) decrypts an attachment, c′, of the given

type, t, using the pointer, mptr , and outputs the resulting contents, m.
The sender generates new key material (see lines 1 to 4) that is used to encrypt

the attachment contents using a combination of AES-CBC and HMAC-SHA256
(see lines 5 to 6). Different types of attachments use a different information
string for key derivation (line 2). For example, images use the string ‘WhatsApp
Image Keys’. Note that the initialisation vector is removed from the ciphertext
for distribution, but included when computing the authentication tag (line 6).
The encrypted blob is accompanied by a pointer structure that includes (a) the
type of the attachment, (b) the 32 byte key material required to authenticate and
decrypt the ciphertext, (c) a hash of the ciphertext and authentication tag with
the initialisation vector removed, and (d) a pointer to the attachment’s ciphertext
and tag on the server (lines 1, 8 and 9). We do not include the attachment’s
location on the server in the pseudocode description. This attachment pointer,
mptr , is transmitted as the contents of a normal encrypted message (over a Signal
pairwise channel for direct messages or a Sender Keys session for groups).

The decryption process mirrors the encryption process. First, the hash within
the pointer is used to fetch the encrypted attachment from the store. Note that
ATTACH.Dec does not describe this process, taking the encrypted attachment as
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input instead. Next, the client ensures that the blob given matches the hash given
in the pointer structure (line 2). The provided random key material is stretched
using HKDF to derive the initialisation vector and encryption key for AES-CBC
as well as the key for the authentication tag (lines 3 to 5). The client proceeds
to check the authentication tag against the ciphertext (with the initialisation
vector prepended) and, if this is successful, decrypts the ciphertext and returns
the resulting attachment (lines 6 to 8). Note that the inclusion of the hash within
the message pointer cryptographically links a particular attachment ciphertext
with the message, avoiding a (potentially compromised) sender changing the
attachment contents in the future. Additionally, the inclusion of the attachment
type during key derivation cryptographically protects against type confusion.

ATTACH.Enc(m, t)

1 : r ←$ {0, 1}32B

2 : k ← HKDF(∅, r, t, 112B)

3 : aiv ← k[0→ 15B]; aek ← k[16→ 47B]

4 : ahk ← k[48→ 79B]; ark ← k[80→ 111B]

5 : c← AES-CBC.Enc(aek , aiv ,m)

6 : τ ← HMAC(ahk , c)[0→ 9B]

7 : c′ ← c[16B→ . . .] // remove iv

8 : h← SHA256(c′ ‖ τ)
9 : mptr ← Obj(ATTACH, t, r, h)

10 : return mptr , c
′, τ

ATTACH.Dec(mptr , c
′, τ)

1 : (t, r, h)← Obj(ATTACH,mptr )

2 : if (h = SHA256(c′ ‖ τ))
3 : k ← HKDF(∅, r, t, 112B)

4 : aiv ← k[0→ 15B]; aek ← k[16→ 47B]

5 : ahk ← k[48→ 79B]; ark ← k[80→ 111B]

6 : if (τ = HMAC(ahk , aiv ‖ c′)[0→ 9B])

7 : m← AES-CBC.Dec(aek , aiv , c′)

8 : return m
9 : return ⊥

Fig. 14: Pseudocode describing how attachments are secured in WhatsApp.

To send an attachment, a WhatsApp client calls into ATTACH.Enc, uploads
the encrypted attachment blob to the server and sends the attachment pointer
over a secure channel to the intended recipient(s). In a direct message, this
message will be sent over a Signal pairwise channel, while in group chats the
message will be sent over a sender keys channel. When the recipient(s) receive a
two-party or sender keys message containing an attachment pointer, they retrieve
the encrypted attachment blob from the server, then call ATTACH.Dec with both
the attachment pointer and blob to retrieve its plaintext, m. A return value of ⊥
indicates an error. We do not model the security of ATTACH explicitly. However,
since this scheme is used by WhatsApp for history sharing, we do so implicitly.
Additionally, attachments in WhatsApp offer a number of features, such as
chunking and previews, that we do not explore in this document. See Transmitting
Media and Other Attachments in the WhatsApp security whitepaper [66].

History sharing. History sharing occurs from the primary device to new compan-
ion devices. The primary device encrypts historic messages and sends them using
the attachment mechanism described above. This happens once upon linking a
new companion device, and can also be triggered on-demand. History sharing
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is one-way (from the primary device to verified companion devices of the same
user) and shares the transcript directly, not key material.

We describe WhatsApp’s history sharing through the HS.Share and HS.Receive
algorithms.

• pst , cP , chist , τhist ←$ HS.Share(ρ, pst , skb, T ) describes a primary device,
with role ‘ρ = primary’ and pairwise session state pst , sharing the given
message transcript, T , with the intended recipient, identified by the key
bundle skb. It outputs an updated pairwise session state, pst , a pairwise
ciphertext, cP , an encrypted attachment, chist , and authentication tag,
τhist .

• pst , T ← HS.Receive(ρ, pst , skb, cP , chist , τhist) describes a companion de-
vice, with role ‘ρ = companion’ and pairwise session state pst , receiving a
history share, from the device identified by the key bundle skb, consisting
of a pairwise ciphertext, cP , an encrypted attachment, chist , and authen-
tication tag, τhist . If successful, it outputs an updated pairwise session
state, pst , and the transcript, T .

HS.Share(ρ
is
=primary, pst , skb, T )

1 : mptr , chist , τhist ←$ ATTACH.Enc(T,

2 : WhatsApp History Keys)

3 : pst , cP ←$ DM.Enc(pst , skb,mptr )

4 : return pst , cP , chist , τhist

HS.Receive(ρ
is
=companion, pst , skb, cP , chist , τhist)

1 : pst ,mptr ← DM.Dec(pst , skb, cP )

2 : assert mptr .t = WhatsApp History Keys

3 : T ← ATTACH.Dec(mptr , chist , τhist)

4 : return pst , T

Fig. 15: Pseudocode describing how history is shared in WhatsApp.

Once a primary device finishes linking a new companion, it executes the
HS.Share algorithm. This algorithm utilises the aforementioned attachments
mechanism to create an encrypted attachment containing the appropriate message
transcript (see line 1). The resulting encrypted blob is uploaded to the server,
while the attachment pointer is shared with the companion device over a pairwise
channel (see line 2). When a companion device receives such a message, they
execute the HS.Receive algorithm. To start, the pairwise ciphertext is decrypted
using the claimed device identity (line 1). The resulting attachment pointer and
encrypted attachment blob are provided to the attachment decryption algorithm
which, in turn, outputs the transcript upon success (line 2). Note that WhatsApp
uses the ‘WhatsApp History Keys’ attachment type to differentiate history sharing
attachments from others.

The HS algorithms in this section do not capture the verification and en-
forcement that clients perform to determine which devices to share or accept
history from. We build upon our informal description in this section, with explicit
pseudocode in Section 3.5.
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3.4 Authenticating Cryptographic Identities

WhatsApp provides two methods of authenticating the cryptographic identity of
other users (and their devices).

Out-of-band Verification using QR Codes. User-to-user verification is an optional
secondary step that involves either QR code verification or comparison of security
fingerprints. When scanning QR codes, they directly encode a list of all primary
and companion device identity keys in the QR code. When comparing security
fingerprints, they generate a 60-bit number that is a function of all these keys.

A similar procedure is used for device-to-device verification and is performed
as part of the companion device linking process (such that it is not possible to
add a companion device which has not been verified out-of-band).

Key Transparency. WhatsApp uses a key transparency log to assure users,
through independent auditors, that the server is honestly distributing their
cryptographic identities. As discussed, we do not cover such functionality in
this work. For more details, see WhatsApp’s blog post on key transparency [45],
whitepaper [68], open-source implementation akd [55] and the academic works it
is built upon [49, 24, 54].

3.5 The WhatsApp Multi-Device Group Messaging Protocol

We now describe how WhatsApp combines these components to construct a multi-
device group messaging protocol. We do so, primarily, through the algorithms
in Figure 16. These describe the WA protocol, a subset of WhatsApp capturing
how clients perform user and device cryptographic identity management, group
messaging and history sharing.

User and device management. When a user sets up a new account, the device
they are using creates a cryptographic identity for itself which becomes the
user’s primary device. We describe this process in the WA.NewPrimaryDevice
algorithm. WhatsApp will maintain a mapping between the user’s account, their
phone number and the primary device’s cryptographic identity. As discussed in
Section 3.4, WhatsApp provide a number of methods to verify such mappings.
Functionally, the primary device initialises an instance of the multi-device sub-
protocol, which we represent with a call to MD.Setup (see line 1). They additionally
initialise the pairwise channels sub-protocol using the identity key from the multi-
device protocol (line 2). This outputs a public key bundle containing the device’s
identity key that identifies the user both in the context of device management
and pairwise channels. The key bundle additionally includes the medium-term
keys, ephemeral keys and signatures that allow other devices to initialise Signal
two-party channels. A private device state, wst , is initialised to store the secret
state for the multi-device and pairwise channel sub-protocols (lines 3 and 4). The
device state is kept private while the key bundle is distributed through the server.
The primary device may now engage and participate in new messaging sessions.
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WA.NewPrimaryDevice()

1 : isk , ipk ,md ←$ MD.Setup()

2 : pst , skb ←$ DM.Init(isk , ne)

3 : Γ ← Map{(ipk ,md .γ)}; gi← 0

4 : wst ← Obj(WA, primary, isk , ipk , pst ,Γ ,md , gi)
5 : return wst , skb

WA.NewCompanionDevice()

1 : isk , ipk ←$ XDH.Gen()

2 : pst , skb ←$ DM.Init(isk , ne); Γ ← Map{}
3 : lk ←$ {0, 1}32B; link ← (ipk , lk); gi← 0

4 : wst ← Obj(WA, companion, isk ,∅, pst ,Γ ,∅, gi, lk)
5 : return wst , qr , skb

WA.LinkDevice(wst
is
=Obj(WA, primary, · ), link is

=(ipkc, lk))

1 : wst .md ← MD.Link(primary,wst .isk ,wst .md , ipkc)

2 : dr ← wst .md .∆[ipkc]; τlink ← HMAC(

lk,Obj(L-DATA, dr .γ ‖ dr .ipkc ‖ dr .ipkp ‖ dr .σp→c))

3 : return wst ,wst .md , τlink

WA.LinkDevice(wst is
=Obj(WA, companion, · ),md , τlink )

1 : dr ← wst .md .∆[PK(wst .isk)]

2 : assert τlink = HMAC(

lk,Obj(L-DATA, dr .γ ‖ PK(wst .isk) ‖ dr .ipkp ‖ dr .σp→c))

3 : wst .md ← MD.Link(companion,wst .isk ,md , dr .ipkp)

4 : return wst ,wst .md

WA.UnlinkDevice(wst is
=Obj(WA, primary, · ), ipkc)

1 : wst .md ← MD.Unlink(primary,wst .isk ,wst .md , ipkc)

2 : return wst ,wst .md

WA.RefreshDeviceList(wst is
=Obj(WA, primary, · ))

1 : wst .md ← MD.Refresh(primary,wst .isk ,wst .md)

2 : return wst ,wst .md

WA.NewGroup(wst is
=Obj(WA, · ),mem,MD)

1 : r1 ←$ {0, 1}16; r2 ←$ {0, 1}16

2 : wst .gi← wst .gi + 1

3 : gid← Obj(GID, r1, r2, gi)
4 : wst ←WA.JoinGroup(wst , gid,mem,MD)
5 : return wst , gid

WA.JoinGroup(wst is
=Obj(WA, isk , · ), gid,mem,MD)

1 : ipk ← PK(isk)

2 : assert ipk in mem
3 : wst .mem[gid]← mem
4 : wst .sktssnd [gid]←$ SK.Init(snd, ipk , [ ])

5 : for ipkp∗ in wst .mem[gid] :
6 : wst ←WA.AddMember(wst , gid, ipkp∗,MD[ipkp∗])

7 : return wst

WA.AddMember(wst is
=Obj(WA, · ), gid, ipk∗,md∗)

1 : wst .mem[gid]←∪ {ipkp∗}
2 : ipksX ← MD.Devices(ipkp∗,wst .Γ [ipkp∗],md∗)

3 : for ipk† in ipksX :

4 : wst .sktssnd [gid]← SK.Add(wst .sktssnd [gid], ipk†)

5 : wst .sktsrcv [gid, ipkp∗, ipk†]←$ SK.Init(rcv, ipk†)

6 : return wst

WA.RemoveMember(wst is
=Obj(WA, · ), gid, ipk∗)

1 : for (ipk†, ·) in wst .sktsrcv [gid, ipkp∗, · ] :
2 : wst .sktssnd [gid]← SK.Rem(wst .sktssnd [gid], ipk†)

3 : // (inbound sessions from ipk∗ are not removed)

4 : wst .mem[gid]← wst .mem[gid] \ {ipkp∗}
5 : return wst

WA.SendGroup(wst is
=Obj(WA, isk , ipkp,Γ ,mem, · ), gid,MD,SKB,m)

1 : wst ← ∗WA.ProcessDL(wst , gid,MD)
2 : meta ← ICDC.Generate(ipkp,Γ ,mem[gid],MD)
3 : skstsnd ← wst .sktssnd [gid]; pst ← wst .pst

4 : skstsnd , pst ,
−→
cP , cU ←$ SK.Enc(skstsnd , pst ,SKB,meta,m)

5 : wst .sktssnd [gid]← skstsnd ; wst .pst ← pst

6 : return wst ,
−→
cP , cU

WA.ReceiveGroup(wst is
=Obj(WA, · ), gid, ipks, cP , cU ,MD,SKB)

1 : skstrcv ← wst .sktsrcv [gid, ipks]; pst ← wst .pst

2 : if sktsrcv [gid, ipks] = ⊥ : return wst ,⊥
3 : skstrcv , pst ,meta,m← SK.Dec(skstrcv , pst ,SKB[ipks], cP , cU )

4 : if m = ⊥ : return wst ,⊥
5 : wst .sktsrcv [gid, ipks]← skstrcv ; wst .pst ← pst

6 : wst .Γ ← ICDC.Process(wst .ipkp,wst .Γ , ipks,meta,MD)
7 : wst ← ∗WA.ProcessDL(wst , gid,MD)
8 : if wst .sktsrcv [gid, ipks] = ⊥ : return wst ,⊥
9 : return wst ,m

∗WA.ProcessDL(wst is
=Obj(WA, · ), gid,MD)

1 : for (ipk∗,md) in MD :

2 : γ ← wst .Γ [ipk∗]

3 : ipksX ← MD.Devices(ipk∗, γ,md)

4 : if ipksX 6= ⊥ : wst .Γ [ipk∗]← γ

5 : for (ipk†, skst) in wst .sktsrcv [gid, ipk∗, · ] :
6 : if ipk† not in ipksX :

7 : wst .sktssnd [gid]← SK.Rem(wst .sktssnd [gid], ipk†)

8 : wst .sktsrcv [gid, ipk∗, ipk†]← ∅
9 : for ipk† in ipksX :

10 : if (gid, ipk∗, ipk†) not in wst .sktsrcv :

11 : wst .sktssnd [gid]← SK.Add(wst .sktssnd [gid], ipk†)

12 : wst .sktsrcv [gid, ipk∗, ipk†]←$ SK.Init(rcv, ipk†)

13 : return wst

WA.ShareHistory(wst is
=Obj(WA, · ), ipkc,MD,SKB, hist)

1 : WA, primary, ipkp, pst ,Γ , · ← wst

2 : assert ipkc ∈ MD.Devices(ipkp,Γ [ipkp],MD[ipkp])

3 : wst .pst , cP , chist , τhist

4 : ← HS.Share(primary, pst ,SKB[ipkc], hist)

5 : return wst , cP , chist , τhist

WA.ReceiveHistory(wst is
=Obj(WA, · ), ipks,MD,SKB, cP , chist , τhist)

1 : WA, companion, ipkp, pst , · ← wst

2 : assert ipks = ipkp

3 : wst .pst , hist ←
4 : HS.Receive(companion, pst ,SKB[ipkp], cP , chist , τhist)

5 : return wst , hist

Fig. 16: Pseudocode describing multi-device group messaging in WhatsApp, WA.
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When the user logs into a new device, such as the WhatsApp web client,
this companion device will generate its own cryptographic identity. We describe
this process in the WA.NewCompanionDevice algorithm, which proceeds similarly
to WA.NewPrimaryDevice. Companion devices must be linked with a primary
device before they can participate in messaging sessions. Thus, the companion
device additionally generates a 32 byte linking secret that, along with its public
identity key, will be encoded as a QR code to be scanned by the primary device
(lines 3 and 4).23 Upon scanning the QR code, the primary device creates the
account signature and an updated device list. This is described by the primary
device case of the WA.LinkDevice algorithm. Once the multi-device sub-protocol
has performed the linking action (see line 1), the primary device additionally
computes a linking HMAC (line 2). Here, the linking secret is used to key an
HMAC digest containing the linking metadata, the primary device’s identity
key and the account signature. This is sent alongside the device record through
the untrusted server to the companion device. The companion device case of
WA.LinkDevice describes how the companion device completes the linking process.
Before adding their own device signature, the companion device verifies the
providing linking HMAC to ensure that they are linking with the primary device
they intend to (see lines 1 and 2). If this check succeeds, the companion device
proceeds to calculate the device signature and save it to their local state (line
3) before publishing it through the server (line 4). Similarly, a user may remove
a companion device from the account by producing an updated device list
with the companion device’s identity removed. We describe this process in the
WA.UnlinkDevice algorithm.

Note that, our security analysis captures the security of the cryptographic
link that is made without capturing how the creation of that link is secured. In
particular, our analysis does not capture the security of the registration sub-
protocol within an adversarial network. Rather, the security experiment simulates
the sub-protocol without providing the adversary with access to, or control over,
those communications. See Section 4.

Each client synchronises their list of a user’s devices by downloading the
user’s signed device list from the server. This is triggered when (a) the client is
interacting with the user, but does not already have a copy of their device list,
(b) the device list has expired, (c) they have received ICDC information that
indicates a new device list for that user is available, or (d) they have received
a message from a companion device that is not present in the device list. In
our description, we remove this synchronisation mechanism and replace it by
providing the device list as a direct input to each algorithm that uses it. These
algorithms then verify the device list before using it, in a manner equivalent
to WhatsApp’s verification routine during synchronisation. This is principally
achieved through a call to the MD.Devices algorithm.

23 WhatsApp has since introduced an alternative to QR codes for device pairing utilising
confirmation codes [69]. The resulting protocol is substantively different and is not
covered here.
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Group management. The WA.NewGroup algorithm describes the creation of a
new group. The group creator specifies an initial list of users, before generating a
group identifier that consists of two random 16-bit numbers and a local counter
(see lines 1 to 3). Since, from this point onwards, WA.NewGroup follows the
same procedure that new members perform when they join an existing group, we
capture this process through a call to the WA.JoinGroup algorithm (line 4).

When a device joins a group, they take as input the group identifier, a list of
users that are currently members and any relevant multi-device state for those
users (see WA.JoinGroup). Together, the list of users and their public multi-device
state allows the joining device to determine the current group membership as a
list of device identity keys. After initialising its own sending Sender Keys session
with a call to SK.Init (line 4), the device iteratively adds each user in the member
list with a call to WA.AddMember (lines 5 and 6).

WhatsApp clients maintain a sender key session store, represented in our
description by sktssnd and sktsrcv (which store the client’s outbound and inbound
sender key sessions respectively). Inbound sessions are addressed by the sender
key name which consists of the group identifier as well as the session owner’s
user and device identifier. As in Section 3.1, our description replaces the user
identifier with the primary device’s identity key and the device identifier with
the sending device’s identity key under the assumption that such mappings are
correctly maintained by the implementation.

The WA.AddMember algorithm captures the process of adding a new device to
the group. Given the group identifier, identity key of the new member and their
multi-device state, the device adds their user identity key to the member list (see
line 1) before computing the current set of verified devices for that user with a
call to MD.Devices (line 2). The client registers each device as a recipient in its
sending Sender Keys session (lines 3 and 4). It also initialises a recipient Sender
Keys session for each of device (line 5). The process of adding a new member to
the group requires the server to trigger the execution of WA.JoinGroup for each
of the new member’s devices, as well as notify every existing device in the group
with by triggering WA.AddMember.

Similarly, removing a user from a group requires the server to trigger the
WA.RemoveMember algorithm to be executed by every device remaining in the
group. Given the group identifier and primary identity key of the removed user,
the client removes any recipient device associated with this identity key from the
client’s sending Sender Keys session. As discussed in Section 3.3, we were unable
to find evidence that the Sender Keys sessions originating from the removed
device are removed from the local state (reflected in line 3 of WA.RemoveMember).

Group messaging. The WA.SendGroup and WA.ReceiveGroup algorithms capture
how WhatsApp clients send and receive application messages, respectively. In-
ternally, these algorithms use the SK scheme to handle message encryption and
decryption, as well as session initialisation and rotation (see line 4 of WA.Send-
Group and line 3 of WA.ReceiveGroup).

Both sending (and receiving) messages may require the creation (or processing)
of pairwise ciphertexts in addition to Sender Keys ciphertexts (since the former
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may be used to manage the sessions of the latter). WhatsApp clients maintain
a session store for Signal pairwise sessions, the management of which we leave
to the DM scheme previously described. Clients will search for the appropriate
session to decrypt ciphertexts with using the identity claimed in a plaintext
wrapper around the ciphertext (for both pairwise Signal messages and group
Sender Keys messages). In practice, these will be a user and device identifier
in the format expected for XMPP messages [61, 62]. Consistent with previous
modelling decisions, we replace such identifiers with a claimed identity key ipks.
During decryption, clients will execute MD.Devices to check the trust they have
in the sender, as well as to ensure that the claimed identity in the plaintext
wrapper matches the cryptographic identity used to initialise the session.

Multi-device updates. WhatsApp allows the server to push multi-device state
updates to clients. We capture this by including a multi-device state input to the
WA.SendGroup and WA.ReceiveGroup algorithms. When sending messages, clients
will process any updates before they proceed with sending a message (see the
call to ∗WA.ProcessDL on line 1). When receiving messages, clients process such
updates after (see the call to ∗WA.ProcessDL on line 7). In both cases, ICDC
information is generated and processed (lines 2 and 6 respectively) as metadata
within pairwise ciphertexts (passed as the meta parameter to the Sender Keys
scheme in lines 4 and 3 respectively).

The ∗WA.ProcessDL algorithm describes how WhatsApp clients process and
react to changes to the multi-device state of their communicating partners. As
described in Section 3.1, each client stores the timestamp of the most recent
device list they have observed for each user they communicate with. We capture
these values in the Γ dictionary which maps a user’s identity key to the minimum
device list generation they will accept for that user. The client uses the multi-
device sub-protocol to determine the list of verified devices, given the minimum
device list generation stored for that user and multi-device state (see lines 2
and 3). If this succeeds, clients will update their minimum device list generation
(line 4). Having determined the list of verified devices for this user, clients locate
revoked devices to remove them from their Sender Keys sessions (see lines 5 to
8) and locate new devices to add them (lines 9 to 12).

History sharing. The WA.ShareHistory and WA.ReceiveHistory algorithms provide
a minimal description of how WhatsApp clients handle history sharing. It does
not describe how clients maintain a message transcript, nor does it capture how
received transcripts are processed. Additionally, it does not describe under what
circumstances history sharing is triggered. Rather, our description focuses on
capturing the cryptography used to secure its transfer. When history sharing
is triggered, clients ensure that they are the primary device (see line 1) and
that the recipient identity is a verified companion device (line 2), before passing
the request to the HS.Share algorithm. When a client receives a history sharing
ciphertext, they ensure that they are a companion device (see line 1) and that
the sender is their primary device (line 2), before passing the request to the
HS.Receive algorithm.
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4 Device Management with Public Key Orbits

In this section, we seek to capture and analyse WhatsApp’s device management
functionality (described in Section 3.1). We introduce public key orbits which
bind together one primary key pair (pkp, skp) with several companion key pairs
(pkc, skc). This captures WhatsApp’s multi-device setup (MD) where one primary
device authenticates possibly several companion devices which also attest their
membership to the group of devices orchestrated by the primary device.

We define the syntax of a public key orbit as follows.

Definition 17 (Public Key Orbit). Let DS := (DS.Gen,DS.Sign,DS.Verify) be
a digital signature scheme. A PO scheme is a five-tuple of algorithms, (PO.Setup,
PO.Attract, PO.Repel, PO.Refresh, PO.Orbit).

1) The setup algorithm, PO.Setup, takes in a security parameter and outputs
as digital signature (private, public) key pair (skp, pkp), an initial state
orb where orb.γ = 0 and a predicate PO.Reject? accepting a message m
and outputting a bit {0, 1}. This is a probabilistic algorithm.

skp, pkp, orb,PO.Reject?←$ PO.Setup(1λ)

2) The attraction algorithm, PO.Attract, takes in some signing key sk, a
verification key pk and a state orb and outputs a new state orb′ or ⊥. The
signing key here is either skp or a signing key output by DS.Gen. This is
a probabilistic algorithm.

orb′ ←$ PO.Attract(sk , pk , orb)

3) The repelling algorithm, PO.Repel, takes in the signing key skp, a verifi-
cation key pk and a state orb and outputs a new state orb′ or ⊥. This is
a probabilistic algorithm.

orb′ ←$ PO.Repel(skp, pk , orb)

4) The refresh algorithm, PO.Refresh, takes in the signing key skp, a state
orb and outputs a new state orb′ or ⊥. This is a probabilistic algorithm.

orb′ ←$ PO.Refresh(skp, orb)

5) The orbit calculation algorithm, PO.Orbit, takes in the verification key
pkp, a state orb and a generation i and returns a set of verification keys
P or ⊥. This is a deterministic algorithm.

P ←$ PO.Orbit(pkp, orb, i)

Remark 2. Note that this definition does not permit some (skc, pkc) pair to
“repel” itself from (skp, pkp).
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ExpwPO
PO,(λ,nch,nσ,ng)

(A)

1 : SK ← ∅ // Initialise set to store signing keys,

2 : T ← Map{0 :∅} // record “to” links per gen,

3 : F ← ∅ // all “from” links in single set,

4 : C ← ∅ // challenge companion keys, and

5 : corr ← false // if primary key compromised.

6 : skp, pkp, orb,PO.Reject?← PO.Setup(1λ)

7 : SK ←∪ {skp}

8 : orb?, γ? ← AO(1λ, pkp, orb,PO.Reject?)

9 : P ← PO.Orbit(pkp, orb
?, γ?)

10 : // Compare orbit against expected value

11 : γ′ ← max[orb?.γ, γ?]

12 : T ′ ← T [ γ′ ] ∪ T [ γ′ + 1 ] ∪ . . . ∪ T [PO.γ ]

13 : w0 ← ( corr = false ) ∧ (P \ T ′ 6=? ∅ )
14 : w1 ← (P ∩ C \ F 6=? ∅ )
15 : return w0 ∨ w1

Attract(pkself , pkother )

1 : // Is this a “to” or “from” link?

2 : op← ⊥
3 : if pkself = pkp :

4 : op← to

5 : elseif pkother = pkp ∧ pkself ∈ C :
6 : op← from

7 : else : return ⊥
8 : // Find signing key then create link

9 : let skself ∈ SK st PK(skself ) = pkself

10 : orb′ ← PO.Attract(skself , pkother , orb)

11 : assert orb′ 6= ⊥
12 : // Record new link and update state

13 : if op = to :

14 : T [orb′.γ]← T [orb.γ] ∪ {pkother}
15 : else :

16 : T [orb′.γ]← T [orb.γ]
17 : F ← F ∪ {pkself }
18 : orb ← orb′

19 : return orb

Repel(pk)

1 : orb′ ← PO.Repel(skp, pk, orb)

2 : assert orb′ 6= ⊥
3 : T [orb′.γ]← T [orb.γ] \ {pk}
4 : orb ← orb′

5 : return orb

Refresh( )

1 : orb′ ← PO.Refresh(skp, orb)

2 : assert orb′ 6= ⊥
3 : orb ← orb′

4 : return orb

Compromise()

1 : corr ← true

2 : return skp

Sign(pk,m)

1 : if PO.Reject?(m) :

2 : return ⊥
3 : let sk ∈ SK st PK(sk) = pk

4 : return DS.Sign(sk,m)

Challenge()

1 : sk, pk ← DS.Gen(1λ)

2 : SK ←∪ {sk}
3 : C ←∪ {pk}
4 : return pk

Eject(pk)

1 : assert pk 6= pkp

2 : C ←\ {pk}
3 : let sk ∈ SK st PK(sk) = pk

4 : return sk

Fig. 17: Security experiment capturing Weak Public Key Orbit security.
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We define a series of correctness properties.
Definition 18 (Correctness of Public Key Orbits). Let PO = (PO.Setup,
PO.Attract,PO.Repel,PO.Refresh,PO.Orbit). Let z = poly(λ) be the maximum
value of any orb.γ observed in any calls to functions of PO. Let (skc, pkc) ←
DS.Gen(1λ). Let orbi imply that orbi.γ = i. We say PO is correct, if ∀ (skp, pkp),
orb,PO.Reject?← PO.Setup(1λ), we have

1) (Operations with skp increase gen). For op ∈ {PO.Attract,PO.Repel,
PO.Refresh} we have orb′.γ > orb.γ for orb′ ← op(skp, . . . , orb).

2) (Index consistency) Let orb be the output of any series of PO.Attract,
PO.Repel,PO.Refresh after a PO.Setup. Then for P ← PO.Orbit(pkp,
orb, k) we have P 6= ⊥ if orb 6= ⊥ and k = orb.γ.

3) (Attracting without repelling includes) Let 0 ≤ i < z be some index
such that PO.Attract(skp, pkc, orbi) was called. Let i < j < z the smallest
index such that PO.Repel(skp, pkc, orbj) was called. Let j = z if no such
call occurred. Let i′ be the smallest index i′ such that PO.Attract(skc,
pkp, orbi′) was called. It holds that ∀ max(i, i′) < k ≤ j

pkc ∈ PO.Orbit(pkp, orbk, k).

4) (Repelling removes) Let i be the smallest index such that PO.Repel(skp,
pkc, orbi) or i = 0 if no such call happened. Let j > i be the smallest in-
dex such that both PO.Attract(skp, pkc, orb) and PO.Attract(skc, pkp, orb

′)
have been called for some orb.γ ≥ j. It holds that

pkc /∈ PO.Orbit(pkp, orbk, k)∀i < k ≤ j.

5) (Refresh does not change list) If orb′ ← PO.Refresh(skp, orb) was
called then for P ← PO.Orbit(skp, orb, orb.γ) and P ′ ← PO.Orbit(pkp,
orb′, orb′.γ) we have P = P ′.

We define wPO security as the inability of an attacker to produce a PO state
orb that (1) verifies and (2) outputs a device list containing devices not produced
by honest calls to PO.Attract or were followed by an PO.Repel call.

We insist on this guarantee even in the presence of a signing oracle that will
sign any message except those specified by PO.Reject?.24 Finally, we demand that
even if the primary signing key skp is compromised, the holder cannot “forcefully
adopt” some pkc. We capture compromise of the primary signing key through
the Compromise oracle.

We proceed to formalise this security notion as follows. Note that we call
this notion “weak”, denoted wPO, to highlight that stronger notions are possible
and might be desirable. In particular, our definition allows the adversary to drop
devices from the orbit without winning the game, i.e. we rule this out as a trivial
win. This notion captures WhatsApp’s multi-device security guarantees.
24 This will allow us to model the lack of domain separation at the level of signing keys

in WhatsApp.
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Definition 19 (Weak Public Key Orbit Security). Let PO = (PO.Setup,
PO.Attract,PO.Repel,PO.Refresh,PO.Orbit). The advantage of an adversary A
breaking wPO security is defined as AdvwPO,A

PO (λ) := Pr
[
ExpwPO,A

PO (λ)
]

where
ExpwPO

PO,Λ(A) is defined in Figure 17.

WA-PO.Setup(1λ)

1 : iskp, ipkp ←$ XDH.Gen(1λ)

2 : m← 0x0602 ‖ [ipkp] ‖ 0

3 : σdl ← XEd.Sign(iskp,m)

4 : orb ← Obj(PO, ipkp, [ipkp], 0, σdl , [∅])

5 : Reject← m[0]
?
= 0x06

6 : return (iskp, ipkp), orb,Reject

WA-PO.Refresh(isk , orb)

1 : ipk ← PK(isk)

2 : ipkp
is
= ipk , dl , γ, σdl ,∆← orb

3 : γ ← γ + 1

4 : m← 0x0602 ‖ dl ‖ γ
5 : σdl ← XEd.Sign(isk ,m)

6 : orb′ ← Obj(PO, ipk , dl , γ, σdl ,∆)

7 : orb ← orb′ ; return orb′

WA-PO.Repel(isk , ipk∗, orb)

1 : ipk ← PK(isk)

2 : ipkp
is
= ipk , dl , γ, σdl ,∆← orb

3 : γ ← γ + 1

4 : dl ← [ipk† in dl if ipk† 6= ipk∗]

5 : m← 0x0602 ‖ dl ‖ γ
6 : σdl ← XEd.Sign(isk ,m)

7 : orb′ ← Obj(PO, ipkp, dl , γ, σdl ,∆)

8 : orb ← orb′ ; return orb′

WA-PO.Attract(isk , ipk∗, orb)

1 : ipk ← PK(isk)

2 : if ipk = orb.ipkp :

3 : ipkp, dl , γ, σdl ,∆← orb

4 : γ ← γ + 1

5 : m← 0x0600 ‖ γ ‖ ipkp ‖ ipk∗

6 : σp→c ← XEd.Sign(isk ,m)

7 : ∆[ipk∗]← Obj(DR, γ, ipkp, ipk∗, σp→c,∅)

8 : dl ← dl ∪ {ipk∗}
9 : σdl ← XEd.Sign(isk , 0x0602 ‖ dl ‖ γ)

10 : orb′ ← Obj(PO, isk , dl , γ, σdl ,∆)

11 : elseif ipk∗ = orb.ipkp :

12 : ipkp, dl , γ, σdl ,∆← orb

13 : γ, ipkp
is
= ipkp, ipkc

is
= ipk , σp→c, σc→p

is
=∅← ∆[ipk ]

14 : σc→p ← XEd.Sign(isk , 0x0601 ‖ γ ‖ ipkp ‖ ipk)

15 : ∆[ipk ]← Obj(DR, γ, ipkp, ipk , σp→c, σc→p)

16 : orb′ ← Obj(PO, ipkp, dl , γ, σdl ,∆)

17 : else : return ⊥
18 : orb ← orb′ ; return orb′

WA-PO.Orbit(ipkp, orb
?, i)

1 : assert orb?.dl [0] = orb?.ipk = ipkp

2 : assert orb?.γ ≥ i

3 : m← 0x0602 ‖ orb?.dl ‖ orb?.γ
4 : assert XEd.Verify(ipkp,m, orb?.σdl)

5 : for dr ∈ orb?.∆

6 : m0 ← 0x0600 ‖ dr .γ ‖ ipkp ‖ dr .ipkc

7 : m1 ← 0x0601 ‖ dr .γ ‖ ipkp ‖ dr .ipkc

8 : b0 ← XEd.Verify(ipkp,m0, dr .σp→c)

9 : b1 ← XEd.Verify(dr .ipkc,m1, dr .σc→p)

10 : b2 ← dr .ipkc 6= ipkp

11 : b3 ← (dr .ipkc ∈ orb?.dl) ∨ (dr .γ > orb?.γ)

12 : if b0 ∧ b1 ∧ b2 ∧ b3 :

13 : P ←∪ {dr .ipkc}
14 : return P

Fig. 18: Device management in WhatsApp expressed as a public-key orbit.

We now proceed to analyse the security of device management in WhatsApp.
To do so, we express the device management sub-protocol of WhatsApp as a
public key orbit. Doing so required minimal changes to our description of device
management in Section 3. These changes are primarily syntactic in order to
ensure compatibility with the public key orbit formalism. See Figure 18 for the
details of this instantiation.

Definition 20. WA-PO is a public key orbit that implements the PO formalism
with algorithms (WA-PO.Setup, WA-PO.Attract, WA-PO.Repel, WA-PO.Refresh,
WA-PO.Orbit) in Figure 18.
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We state and prove that our instantiation of device management in WhatsApp
as a public key orbit, WA-PO, achieves weak public-key orbit security.

Theorem 1 (Security of WA-PO). For any probabilistic polynomial-time
algorithm A playing the wPO security game instantiated with the WA-PO scheme,
making at most nch queries to Challenge, at most nσ queries to Sign per signing
key, and at most ng cumulative queries to the Attract, Repel and Refresh oracles,
we have:

AdvwPOWA-PO(λ, nch, nσ, ng) ≤ (nch + 1) · AdvEUF-CMA
XEd (λ, nσ + 2 · ng)

Proof. We separate our proof into two cases. In Case 1, we restrict the adversary
to winning the game by causing w0 to be set to true, i.e. by successfully adding
a companion device to the orbit that is not considered linked by the primary
device. In Case 2, we restrict the adversary to winning the game by causing w1

to be set to true, i.e. by adding an honest companion device to the orbit that
was not linked by the companion device itself.

Let Advw0 and Advw1 be the respective advantages in Case 1 and Case 2,
giving:

AdvwPOWA-PO,A(λ, nch, nσ, ng) ≤ Advw0 + Advw1

Case 1: Inject a companion device without the primary device

Game 0. We inline the WA-PO scheme into the wPO security game restricted
to Case 1. This is a syntactic edit such that, Advw0 = AdvG0.

Game 1. The challenger proceeds to abort the game if a query to the Compromise
oracle is issued at any point in the experiment. Since the adversary may only win
the game by causing w0 to be set to true, and this requires that corr = false,
i.e. Compromise has never been called, this change does not reduce the advantage
of the adversary. Thus:

AdvG0 ≤ AdvG1

Game 2. We introduce an abort event, abortforge , that is triggered if the chal-
lenger’s execution of WA-PO.Orbit(pkp, orb?, γ?) has a call to XEd.Verify(
pkp, m, σ) evaluate to true for a message m that was not honestly signed
through a call to XEd.Sign(iskp, m) in service of a Sign, Attract, Repel or Refresh
query.

We bound the probability of abortforge occurring with the following security
reduction. We construct an adversary, B, against an EUF-CMA challenger for
the DS digital signature scheme, which we denote CDS. We proceed to emulate a
variant of Game 1 to our inner adversary, A, but embed the challenge verification
key, pk , output by CDS as the verification key of the primary device, pkp. Whenever
a signature must be produced using its signing counterpart, skp, we instead make
an analogous call to CDS’s Sign oracle. We save the input message for each call
in a set then, if at any point we have a call of the form XEd.Verify(pkp, m, σ)
evaluate to true for a message m that is not in our set, the message m and
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signature σ form a valid forgery. We proceed to return the pair (m,σ) to the
EUF-CMA challenger, CDS, and win the experiment.

It follows that we can bound the probability of the adversary A triggering
abortforge by the advantage of any PPT adversary winning the EUF-CMA security
experiment for the Ed scheme, when restricted to at most nσ + 2 · ng signing
queries. Thus:

AdvG1 ≤ AdvG2 + AdvEUF-CMA
XEd (λ, nσ + 2 · ng)

Thanks to the changes introduced in Game 2, we can be sure that all message-
signature pairs that verify as originating from pkp were, indeed, honestly generated
by the challenger. Further, since WA-PO.Reject? will prevent any calls to Sign
whose message starts with 0x06, we can be sure that all message-signature pairs
that verify as originating from pkp during execution of WA-PO.Orbit were honestly
generated while processing a WA-PO.Setup, WA-PO.Attract, WA-PO.Repel or
WA-PO.Refresh call.

In order to win the game, the adversary must provide an orbit state, orb?,
and generation, γ?, that when processed by PO.Orbit, outputs a set of devices P
containing a companion device key that the primary device does not believe is in
its orbit at the given generation.

Specifically, w0 requires that there P contains a pk for which pk /∈ T ′. If
there exists such a pk , then the provided orbit state, orb?, must contain two
signatures:

1) A device list signature, σdl , produced by pkp. The signed message, m,
must contain a device list, m.dl , for which m.dl [0] = pkp and pk ∈ m.dl ;
and a generation, m.γ, greater than or equal to the given generation, γ?.

2) An account signature, σp→c, produced by pkp. The signed message, m0,
must contain the companion device’s verification key, m0.ipk c = pk , and
the device list generation, m0.γ, for which this signature was created.

Alternatively, if the account signature is newer than the device list signature,
such that m0.γ > m.γ, then WA-PO.Orbit will allow the companion key not to
be present in the device list, i.e it will accept device lists for which pk /∈ m.dl .
We denote these as case (a) and (b), respectively, and show that if the adversary
wins the game while either one is true, this leads to a contradiction.

Suppose that we are in case (a) and the adversary has triggered w0. Let pk
denote the key in P that causes w0 to be satisfied. It follows that the device list
in orb? contains pk and is signed alongside a generation, orb?.γ, that is greater
than or equal to γ?. This may only be the case if the primary device had pk in its
device list at generation orb?.γ and, thus, pk must have an active “to” link entry
in T [orb?.γ]. However, since w0 was triggered, there does not exist a generation
γ greater than or equal to max[orb?.γ, γ?] for which pk has an active “to” link
entry in T [γ]. In other words, we have found ourselves at a contradiction.

Now, suppose that we are in case (b) and the adversary has triggered w0. Let
pk denote the key in P that causes w0 to be satisfied. It follows that there exists
device record, dr , in orb? for pk that is signed alongside a generation, m0.γ,



Formal Analysis of Multi-Device Group Messaging in WhatsApp 47

that is greater than or equal to γ?. This may only be the case if the primary
device had pk in its device list at generation m0.γ and, thus, pk must have an
active “to” link entry in T [m0.γ]. However, since w0 was triggered, there does
not exist a generation γ greater than or equal to max[orb?.γ, γ?] for which pk
has an active “to” link entry in T [γ]. In other words, we have found ourselves at
a contradiction.

It follows that it is not possible for the adversary to win Game 2, i.e. AdvG2 =
0, completing our analysis of Case 1. Note that we did not rely on the security
of signatures created by companion devices and, as such, need not consider the
adversary’s use of the Eject oracle.

Case 2: Inject a companion device without the companion itself

Game 0. We inline the WA-PO scheme into the wPO security game restricted
to Case 2. This is a syntactic edit such that, Advw1 = AdvG0.

Game 1. In this game, we guess one of the companion public keys that causes
w0 to be set to true, such that ‘P ∩ C \ F ’ is not empty. If the guess turns
out to be incorrect at any point, the challenger aborts the game.

Note that the ejection of a device through the Eject oracle removes the device
from the set C. It follows that if we guess a device that is later ejected, it cannot
be a companion public key that causes w0 to be set to true, our guess is incorrect,
and it is determined that the challenger will abort the game.

Overall, there are at most nch possible choices of companion device, giving:

AdvG0 ≤ nch · AdvG1

Game 2. Let (sk ′, pk ′) denote the key pair guessed in Game 1. We introduce an
abort event, abortforge , that is triggered if the challenger’s execution of PO.Orbit(
pkp, orb

?, orb.γ) has a call to XEd.Verify(pk ′,m, σ) evaluate to true for a message
m that was not honestly signed through a call to XEd.Sign(sk ′,m) in service of a
Sign or Attract query.

We bound the probability of abortforge occurring with an analogous security
reduction to that which we use in Game 2 of Case 1, albeit with the challenge
embedded in the key pair guessed in Game 1: (sk ′, pk ′).

It follows that we can bound the probability of the adversary A triggering
abortforge by the advantage of any PPT adversary winning the EUF-CMA security
experiment for the Ed scheme, when restricted to at most nσ +ng signing queries.
Thus:

AdvG1 ≤ AdvG2 + AdvEUF-CMA
XEd (λ, nσ + ng)

Thanks to the changes introduced in Game 2, we can be sure that all
message-signature pairs that verify as originating from pk ′ were, indeed, honestly
generated by the challenger on behalf of pk ′. Further, since WA-PO.Reject? will
prevent any calls to Sign whose message starts with 0x06, we can be sure that all
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message-signature pairs that verify as originating from pk ′ during execution of
WA-PO.Orbit were honestly generated while processing a WA-PO.Attract call.

We now consider the advantage of our adversary in Game 2. Recall that, by
the guess in Game 1, the signing key pk ′ was present in the computed public key
orbit, such that pk ′ ∈ P, and is a tracked companion key, such that pk ;∈ C, but
is not present in F . Note that dr .σc→p cannot have been an output of Sign since it
starts with 0x06. Further, since pk ′ /∈ F we can determine that no linking query
was made from pk ′ to pkp, i.e. the adversary did not issue the query Attract(

pk ′, pkp) at any point in the experiment. It follows that the challenger did not
execute XEd.Sign(sk ′, 0x0601 ‖ γ ‖ ipkp ‖ pk

′) at any point the experiment. By
Game 2, we know that no such valid signature σ′ exists for which XEd.Verify(
pk ′, 0x0601 ‖ γ ‖ ipkp ‖ pk , σ′) evaluates to true and, therefore, it is not possible
for the public key orbit P output at the end of the experiment to contain pk ′.
Thus, the adversary cannot win, i.e. AdvG2 = 0, and we find:

AdvG1 ≤ AdvEUF-CMA
XEd (λ, nσ + ng)

This completes our analysis of Case 2.
Having bound the advantage of our adversary against Case 1 and Case 2

separately, we recombine them to find:25

AdvwPOWA-PO,A(λ, nch, nσ, ng) ≤ (nch + 1) · AdvEUF-CMA
XEd (λ, nσ + 2 · ng)

Observe that the above bound is a polynomial function of the experiment
parameters (nch, nσ, ng), and the upper bound of the advantage of any PPT
adversary against the EUF-CMA security of XEd. It follows that the advantage
of any PPT adversary against the weak public key orbit security of WA-PO is at
most a negligible function of the security parameter, providing that XEd is an
EUF-CMA secure digital signature scheme.

This completes our proof. ut

5 Pairwise Channels with Session Management

As we saw in Section 3.2, WhatsApp makes use of a collection of two-party
channels for communication between pairs of devices. In particular, clients allow
for up to 40 simultaneously active two-party sessions between themselves and
another device. This mirrors Signal’s use of the Sesame session management
protocol, the implications of which have previously been explored in [28, 30].
The formalism we present here follows the general approach of [30], albeit in the
computational setting.

Additionally, the resulting formalism is not too dissimilar from the MSKE
model introduced in [25], since the security experiment also captures multiple
parallel sessions executing in parallel. Indeed, the core differentiator between the
25 We simplify the expression by noting that AdvEUF-CMA

XEd (λ, nσ+ng) ≤ AdvEUF-CMA
XEd (λ, nσ+

2 · ng) in order to combine the two terms.
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formalism we present here and the MSKE formalism is that we move the session
management responsibilities from the challenger to the protocol itself. We will
later use an existing analysis of Signal two-party channels within this formalism
for our security analysis of WhatsApp’s pairwise channels. As such, we briefly
discuss the MSKE formalism of [25] and discuss how the two formalisms differ in
Section 5.1.

We start by defining the syntax of such protocols.

Definition 21 (Pairwise Channels). A PAIR scheme for secure pairwise chan-
nels is a three-tuple of algorithms, (PAIR.Init, PAIR.Enc, PAIR.Dec) and a three-
tuple of state extractor algorithms, (PAIR.IDENTITY, PAIR.SHARED, PAIR.SESSION).

1) The initialisation algorithm, PAIR.Init, takes in a security parameter and
outputs linked private and public authenticators, and participant informa-
tion to be distributed publicly.

sk , pk , info ←$ PAIR.Init(1λ)

2) The sending algorithm, PAIR.Enc, takes in the private state of the sender,
the public identity of the recipient, their public information and a plaintext
message and outputs an updated private sender state, an identifier for the
session that was used, an identifier for the message and ciphertext.

sk i, sid, z, c←$ PAIR.Enc(sk i, pk j , infoj ,m)

3) The receiving algorithm, PAIR.Dec, takes in the private state of the re-
cipient, the public identity of the sender, their public information, an
identifier for the session that was used, an identifier for the message and a
ciphertext and outputs an updated private recipient state and the resulting
plaintext.

sk i,m← PAIR.Dec(sk i, pk j , infoj , sid, z, c)

The state extractor algorithms specify the varying types of secrets kept within
the private state and how it may be accessed.

1) PAIR.IDENTITY takes in a private state and outputs the long-term identity
secrets it contains: ident-sk ← PAIR.IDENTITY(sk ).

2) PAIR.SHARED takes in a private state and outputs any secret state that is
shared across multiple sessions: share-sk ← PAIR.SHARED(sk ).

3) PAIR.SESSION takes in a private state and session identifier and outputs
the current state of the specified session: sess-sk ← PAIR.SESSION(sk , sid).

Throughout the above we have: sk , pk , info , sid, z,m, c ∈ {0, 1}∗.

Broadly, we consider a PAIR scheme to be correct if the recipient of a ciphertext
always decrypts to the plaintext that was provided by the sender. Since these
channels are stateful and progress over time through cooperation between the
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two parties, it is not immediately clear which particular values of a client’s
state should successfully decrypt which messages. We avoid this problem in the
correctness definition by loosening the requirements: matching plaintexts are only
required when the decryption succeeds. We make no correctness requirements for
the state extractor algorithms. Although, meaningful state extractor algorithms
are essential to capturing a meaningful understanding of the security guarantees
a protocol provides against temporal compromise.
Definition 22 (Correctness of Pairwise Channels). A scheme PAIR =
(PAIR.Init,PAIR.Enc,PAIR.Dec) is correct if, for all sid, z,m, c ∈ {0, 1}∗,(

PAIR.Enc(sk i, pk j , infoj ,m) 7→ (sid, z, c)

∧ PAIR.Dec(sk j , pk i, infoi, sid, z, c) 7→ ( · ,m′)

∧m′ 6= ⊥
)

=⇒ m = m′

provided there exists pk i, sk i
∗, sk i, pk j, sk j

∗ and sk j where
1) (sk∗

i , pk i) are the output of a PAIR.Init call and there exists a polynomial-
step combination of PAIR.Enc and PAIR.Dec calls through which sk i can
be derived from sk i

∗, and

2) (sk∗
j , pk j) are the output of a call to PAIR.Init and there exists a polynomial-

step combination PAIR.Enc and PAIR.Dec calls through which sk j can be
derived from sk∗

j .
We expect secure pairwise channels to provide confidentiality for messages as

well as to guarantee their integrity and authenticity: it should not be possible for an
adversary to modify a message or impersonate another participant. Additionally,
we expect the protocol to be able to recover these security properties after
the compromise of secret state, provided certain conditions have been met.
The protocol-specific state extractor algorithms define the varying types of
compromise, while the conditions in which security is guaranteed are codified by
security predicates. Specifically, the security definition utilises the state extractor
algorithms to leak the correct information to the adversary under the different
categories of compromise, while the security predicates codify when we would
expect security to apply (given such compromises). Thus, the state extractor
algorithms and security predicates work in tandem to define the expected security
properties of a particular scheme for secure pairwise channels.

The security experiment captures confidentiality through the mechanism of
challenge ciphertexts and authentication through a decryption oracle (triggering
an immediate win). In both cases, we mediate the adversary’s ability to win
by checking the appropriate security predicate. To bootstrap the trust between
participants, the challenger provides an initial distribution of each participant’s
public identifier.
Definition 23 (Security of Pairwise Channels). A PAIR scheme is PAIR-
SEC secure if any probabilistic polynomial-time adversary A, with respect to secu-
rity predicates PAIR.CONF and PAIR.AUTH and limited by the experiment param-
eterisation Λ, has a negligible decision-advantage of winning the ExpPAIR-SECΠ,Λ (A)
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ExpPAIR-SECΠ,Λ (A)

1 : b←$ {0, 1}; win ← 0; L← [ ]; for i = 0, 1, 2, . . . , np − 1 : sk i, pk i, infoi ←$ PAIR.Init(1λ)

2 : b′ ← AEnc,Dec,Corrupt∗({pk0, pk1, . . . , pknp−1}, {info0, info1, . . . , infonp−1})

3 : return b = b′ ∧ PAIR.CONF(L)

Enc(i, j, info , sid,m0,m1)

1 : assert len(m0) = len(m1)

2 : sk i, sid, z, c←$

3 : PAIR.Enc(sk i, pk j , info , sid,mb)

4 : L←app (enc, i, j, sid, z,m0,m1, c)

5 : return sid, z, c

Dec(i, j, info , sid, c)

1 : sk i, sid, z,m←$ PAIR.Dec(sk i, pk j , info , sid, z, c)

2 : if m = ⊥ : return ⊥
3 : replay ← (dec, i, j, sid, · , c, · ) ∈ L

4 : forgery ← (enc, j, i, sid, · , · , · , c) /∈ L

5 : win ← replay ∨ (forgery ∧ PAIR.AUTH(L, i, j, sid, z, c,m))

6 : L←app (dec, i, j, sid, z, c,m)

7 : if c ∈ ∗Challenges(L) : return ⊥
8 : return sid, z,m

CorruptIdentity(i)

1 : assert 0 ≤ i < np

2 : corr ← PAIR.IDENTITY(sk i)

3 : L←app (corr-ident, i, corr)

4 : return corr

CorruptShared(i)

1 : assert 0 ≤ i < np

2 : corr ← PAIR.SHARED(sk i)

3 : L←app (corr-share, i, corr)

4 : return corr

CorruptSession(i, j, sid)

1 : assert 0 ≤ i, j < np

2 : corr ← PAIR.SESSION(sk i, pk j , sid)

3 : L←app (corr-sess, i, j, sid, z, corr)

4 : return corr

∗Challenges(L) := [c for (enc, · , · , · , · ,m0,m1, c) in L if m0 6= m1]

Fig. 19: Pairwise Channel Security Game, ExpPAIR-SECΠ,Λ (A).

security experiment detailed in Figure 19. The experiment is parameterised by
Λ = (nd, ni, nm) where

• nd is the number of devices that interact within the experiment,

• ni is the maximum number of sessions that each device may participate
in with a single other device,

• nm is the maximum number of messages exchanged within each of those
sessions.

The security predicates codify precisely under what conditions the scheme should
provide confidentiality and authentication.

1) PAIR.CONF takes an ordered log of actions within a security experiment
and outputs a boolean indicating whether confidentiality holds:

conf ?← PAIR.CONF(L).

2) PAIR.AUTH takes an ordered log of actions, the indices specifying a particu-
lar message within a security experiment, its ciphertext and the plaintext it
decrypted to before outputting a boolean indicating whether authentication
holds:

auth?← PAIR.AUTH(L, i, j, sid, z, c,m).
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See the security game in Figure 19 for the structure of the experiment log, L.

Note that the total number of messages that may be exchanged during the
experiment is N := 1

2 · nd · (nd − 1) · ni · nm.

5.1 Security of WhatsApp’s Pairwise Channels

WA-PAIR.Init(1λ)

1 : ipk , isk ←$ SIGNAL.KeyGen(); spk , ssk ←$ SIGNAL.MedTermKeyGen()

2 : for i = 0, 1, 2, . . . , ne − 1 : epk i, esk i ←$ SIGNAL.EphemKeyGen()

3 : esks ← {esk i : 0 ≤ i < ne}; epks ← {epk i : 0 ≤ i < ne}; ssts ← Map{}; sk ← Obj(PAIR, isk , ssk , esks, ssts)

4 : return (sk ), (ipk , spk), (epks)

WA-PAIR.Enc(sk , pk j , infoj ,m)

1 : PAIR, isk , ssk , esks, ssts ← sk

2 : ipk j , spk j ← pk j

3 : if sid = ∅

4 : epk j ← info [0] // the responder’s one-time key

5 : sid← epk j

6 : sst ← ssts[ipk j , sid]

7 : if sst = ∅ :

8 : sst , · ←$ SIGNAL.Activate(isk , ssk , init, ipk j)

9 : sst , ckex ←$ SIGNAL.Run(isk , ssk , sst , (spk j , sid))

10 : else :

11 : sst , ckex ←$ SIGNAL.Run(isk , ssk , sst ,∅)

12 : assert sst .status[sst .stage] = accept

13 : cmsg ←WA-AEAD.Enc(sst .k[sst .stage], ckex ,mb)

14 : ssts[ipk j , sid]← sst

15 : sk ← Obj(PAIR, isk , ssk , esks, ssts)

16 : return sk , sid, sst .stage, (ckex , cmsg)

WA-PAIR.Dec(sk , pk j , infoj , (ckex , cmsg))

1 : PAIR, isk , ssk , esks, ssts ← sk ; ipk j , spk j ← pk j

2 : if sid = ∅ : epk i ← ckex .epk resp

3 : epk j ← ckex .epk init ; sid← epk i; sst ← ssts[ipk j , sid]

4 : if sst = ∅ :

5 : [esk ]← [esk ′ in esks if ckex .epk resp = PK(esk ′)]

6 : sst , · ←$ SIGNAL.Activate(isk , ssk , resp, ipk j , esk ,

7 : ckex .epk resp)

8 : sst , · ←$ SIGNAL.Run(isk , ssk , sst , ckex , skbj , esk)

9 : esks ← [esk ′ in esks if ckex .epk resp 6= PK(esk ′)]

10 : else :

11 : sst , · ←$ SIGNAL.Run(isk , ssk , sst , ckex )

12 : assert sst .status[sst .stage] = accept

13 : m←WA-AEAD.Dec(sst .k[sst .stage], ckex , cmsg)

14 : assert m 6= ⊥
15 : ssts[ipk j , sid]← sst

16 : sk ← Obj(PAIR, isk , ssk , esks, ssts)

17 : return sk , sid, sst .stage,m

WA-PAIR.IDENTITY(sk i) := sk i.isk WA-PAIR.SHARED(sk i) := (sk i.ssk , sk i.esks)

WA-PAIR.SESSION(sk i, pk j , sid) := ∗WA-PAIR.FindSession(sk i.ssts[pk j .ipk ], sid)[0]

WA-PAIR.CONF(L) := ∀ (enc, i, j, sid, z, · , · , · ) ∈ ∗Challenges(L) : SIGNAL.FRESH(i, j, sid, z)

WA-PAIR.AUTH(L, i, j, sid, z, c,m) := SIGNAL.FRESH(i, j, sid, z)

Fig. 20: WhatsApp’s DM sub-protocol expressed as a pairwise channel in the
WA-PAIR formalism, with state extractor algorithms (WA-PAIR.IDENTITY, WA-
PAIR.SHARED, WA-PAIR.SESSION) and security predicates (WA-PAIR.CONF, WA-
PAIR.AUTH). See Appendix A.1 for a description of SIGNAL.FRESH from [25]
translated into the PAIR-SEC security experiment.
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We now proceed with our security analysis of WhatsApp’s pairwise channels
within our newly introduced formalism. We start with a description the simpli-
fying assumptions and changes we have made while transforming WhatsApp’s
implementation into an instance of PAIR, which we name WA-PAIR.

Avoiding the joint security of X25519 and XEdDSA. First, we remove the pre-key
signatures and their verification checks. We do this by allowing the challenger
to distribute participant’s signed pre-keys in a trusted manner at the beginning
of the security experiment, in the same way that they distribute their identity
keys. With this change it is not possible for an adversary to modify or replace
a signed pre-key with one that gains them any advantage (in either learning
the bit b or setting the win flag). Removing the pre-key signatures allows us
to side-step the issue of identity keys being used for both signatures and key
exchange. Instead, we may simply rely on the security of the identity keys for key
exchange. Nonetheless, applying our result to WhatsApp still requires the implicit
assumption that such dual-use of identity keys does not affect the security of
either the XDH key exchange and the XEd signatures. This mirrors a similar
choice made in the prior analysis of X3DH that we rely on [25].

Message routing. In our description of WhatsApp’s pairwise channels, reflecting
the behaviour of WhatsApp, the session used to encrypt or decrypt a given
message is determined by the client. To encrypt a messages, they use their most
recently active session with that recipient. While, to decrypt a message, clients
try each active session in the order of most recent use. In the PAIR-SEC model,
the adversary is given the ability to select the particular session that the client
should use. This transformation is safe in that it only provides the adversary
with additional power: they are able to simulate the original functionality by
triggering the appropriate sequence of operations with the appropriate session
identifiers.

Rather than detecting pre-key ciphertexts during decryption, and passing
them to the appropriate function, clients now route ciphertexts based on their
local session state. If we assume that clients only process pre-key messages for
sessions that are in the pre-key stage, and normal messages for sessions that
have past the pre-key state, this change is simply a re-expression of the existing
pseudocode.

Refreshing ephemeral keys. Finally, WhatsApp allows clients to upload new
sets of ephemeral keys dynamically as the need arises. This functionality is not
captured in our modelling of pairwise channels. Instead, we generate all such keys
at the start of the security experiment. Thus, we set ne in WA-PAIR to nd · ni

from the PAIR-SEC experiment. This has the disadvantage of not capturing the
ability for new ephemeral key pairs to be generated after a compromise has been
recovered from (i.e. CorruptShared reveals all future ephemeral key pairs to the
adversary).
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Reusing the Multi-Stage Key Exchange formalism. As mentioned, we re-use the
existing analysis of Signal two-party key exchange of [25] in this analysis. In
particular, we replace WhatsApp’s implementation of a single two-party Signal
session with an instance of Signal within the MSKE formalism of [25]. We then
proceed to prove the security of WA-PAIR with respect to the MS-IND security
of those underlying Signal MSKE channels. However, doing so necessitates a
number of minor changes to the MSKE formalism. We briefly define the modified
syntax, and refer the reader to [25, Section 4.2] for a security definition.

Definition 24 (Multi-stage Key Exchange Protocol). A multi-stage key
exchange protocol MSKE is a tuple of algorithms, along with a keyspace K and a
security parameter λr indicating the number of bits of randomness each session
requires. The algorithms are:

1) The MSKE.KeyGen() 7→ (pk , sk) algorithm generates and outputs the long-
term identity key pair (pk , sk) for a device.

2) The MSKE.MedTermKeyGen(sk) 7→ (spk , ssk) algorithm takes as input the
private long-term identity key sk , then generates and outputs a medium-
term key pair (spk , ssk).

3) The MSKE.EphemKeyGen(sk) 7→ (epk , esk) algorithm takes as input the
private long-term identity key sk , then generates and outputs an ephemeral,
single-use key pair (epk , esk).

4) The MSKE.Activate(sk , ssk , ρ, peerid) 7→ (π
′
,m′) algorithm takes as input

a long-term secret key sk , a medium-term secret key ssk , a role ρ ∈
{init, resp}, and optionally an identifier of its intended peer peerid and
outputs a state π

′ and (possibly empty) outgoing message m′.

5) The MSKE.Run(sk , ssk , π,m) 7→ (π
′
,m′) that takes as input a long-term

secret key sk , a medium-term secret key ssk , a state π and an incoming
protocol or control message m and outputs an updated state π

′ and (possibly
empty) outgoing protocol message m′.

The security analysis in [25] models the session responder’s ephemeral keys as
being generated on-the-fly at the start of each session. They implement this by
requiring that the responding device executes SIGNAL.Activate first, generating
and outputting the one-time public key that the initiating device should use.
This neatly communicates the purpose of the pre-keys, which essentially send
the first message of the key exchange ahead of time. However, it differs from
practice, where WhatsApp (and Signal) pre-generate a batch of one-time keys
at registration time (adding new batches when all of the previous batch have
been exhausted). The server is then expected to distribute these one-time keys to
initiating devices appropriately. Our description of WhatsApp’s pairwise channels
follows the implementation (using pre-generated batches of ephemeral key pairs).

There is little difference in the expressivity of these approaches, since the
original MS-IND model allows exposing the random state used to generate these
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keys. Nonetheless, we have to modify the MSKE formalism, security definition
and the representation of Signal two-party channels compared to that in [25].
We split the generation of one-time keys from the activation of a session by
introducing the MSKE.EphemKeyGen algorithm that generates and returns a
single ephemeral key pair. To activate a session, MSKE.Activate is provided with
the ephemeral key to use (the session initiator is given the public key while the
responder is provided with the private part). Since the pre-key output by SIGNAL
.Activate (with a responding role of ‘resp’) is not affected by the other inputs
to the function, and Rev∗ queries may only be executed for sessions that have
already been activated, we can reason that the results from [25] apply to this
variant directly and without modification.

Next, the analysis in [25] applies to the ExpMS-IND
Π,Λ (A) experiment that allows

a single Test query. However, the PAIR-SEC security experiment allows the
adversary to make multiple challenge queries. We require this multi-challenge
security experiment since, when using the security of pairwise channels to reason
about the security of the distribution of Sender Keys sessions, multiple pairwise
channels are used to distribute a single inbound Sender Key sessions to the many
recipients. Thus, we will assume that Signal’s two-party channels are secure
under a multi-test variant of the ExpMS-IND

Π,Λ (A) security experiment. We posit
that Theorem 1 in [25] can be extended to apply to multiple queries using a
hybrid argument, introducing an additional factor in the number of challenge
messages that are allowed (similar to the analysis in [33, Appendix A]). We do
so without proof, however.

We define the scheme as follows. In doing so, we detail how we have chosen
to map the varying forms of state corruption in the security experiment to the
device state, and the security predicates we prove it secure with respect to. For
example, PAIR.SESSION defines compromise of a client’s shared state as revealing
their medium-term secret key and their unused secret ephemeral keys.

Definition 25. WA-PAIR is a pairwise channel with session management that in-
stantiates the PAIR formalism with algorithms (WA-PAIR.Init, WA-PAIR.Enc, WA-
PAIR.Dec), state extractor algorithms (WA-PAIR.IDENTITY, WA-PAIR.SHARED,
WA-PAIR.SESSION) and security predicates (WA-PAIR.CONF, WA-PAIR.AUTH) in
Figure 20.

We state and prove that the WA-PAIR scheme instantiates a secure pairwise
channel under the security predicates in Figure 20.

Theorem 2. The WA-PAIR protocol specified in Definition 25 instantiates a se-
cure pairwise channel, under security predicates WA-PAIR.AUTH and WA-PAIR.CONF,
with the advantage of any probabilistic polynomial-time adversary A in winning
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the ExpPAIR-SECWA-PAIR,λ,nd,ni,nm
(A) security experiment bound by:

AdvPAIR-SECWA-PAIR (λ, nd, ni, nm)

≤ 1

2
· nd · (nd − 1) · ni · nm ·

[
AdvMS-IND

SIGNAL(λr, nd, 1, ni, nm) + AdvEUF-CMA
WA-AEAD(λ, 1) + AdvIND$-CPA

WA-AEAD(λ, 1)]
under the following assumptions:

1) SIGNAL is a multi-test MS-IND secure MSKE protocol for which the
advantage of any PPT adversary is bound by

AdvMS-IND
SIGNAL(λ, nP , nM , nS , ns)

with respect to security predicate SIGNAL.FRESH as defined in [25],26 and

2) WA-AEAD is an IND$-CPA and EUF-CMA secure one-time AEAD
scheme for which the advantage of any PPT adversary is bound by

AdvEUF-CMA
WA-AEAD(λ, nq) and AdvIND$-CPA

WA-AEAD(λ, nq).

The proof consists of a series of games: G0, G1, A0, A1, C0 and C1. Start-
ing with G0, we inline the WA-PAIR protocol into the original ExpPAIR-SECΠ,Λ (A)
experiment. The first hop, from G0 to G1, relies on the security of the underlying
two-party Signal protocol as an MS-IND secure MSKE, allowing us to swap the
keys that it outputs with random samples from the key space. We then split our
analysis into two cases: an authentication break or a confidentiality break. In
the case of an authentication break, handled in games A0 to A1, we rely on the
one-time EUF-CMA security of the WA-AEAD scheme to bound the possibility of
our adversary producing a forgery of a ciphertext. In the case of a confidentiality
break, games C0, C1.0, C1.1, . . . , C1.N− 1 rely on the one-time IND$-CPA secu-
rity of the WA-AEAD scheme to bound the possibility of the adversary correctly
guessing the challenge bit.

Proof. The proof proceeds through a sequence of games, bounding the advantage
of an adversary A in winning the ExpPAIR-SECWA-PAIR,Λ(A) experiment.

Game 0. We inline WhatsApp’s WA-PAIR protocol (as described in Figure 20)
into the ExpPAIR-SECΠ,Λ (A) security experiment. Thus:

AdvPAIR-SECWA-PAIR,A(λ, nd, ni, nm) = AdvG0

26 The security parameter in the original experiment, λr, represents the number of bits
of randomness used by each SIGNAL session, which we may bound as 3 · nd · λ ≤
λr ≤ poly(λ, nd, ni, nm), where poly(λ) is a polynomial function of the given variables
whose exact value depends on the number of epochs initiated within each two-party
Signal session.
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We now aim to replace each message key with a random sample from its
key space, and to bound the ability of any attacker to detect this change by
their ability to break the underlying two-party Signal protocol. We do this by
building an adversary against the MS-IND security experiment using our PAIR-
SEC adversary. Our MS-IND adversary aims to emulate the Game G0 security
experiment to the Game G0 adversary, all the while embedding the appropriate
MS-IND challenges in place of real keys. For this security reduction to work, we
must ensure that every case where our Game G0 adversary wins the emulated
Game G0 experiment translates to a legitimate win of the MS-IND experiment.
In particular, we need to ensure that the Game G0 adversary is not provided
with additional powers over the MS-IND adversary that we construct.

Ensuring the authenticity of key exchange messages. The MS-IND security defi-
nition does not model the encryption scheme nor does it rely on the scheme to
provide authenticity for the key exchange messages. The ExpMS-IND

Π,Λ (A) security
experiment enforces that all key exchange messages are honestly distributed. In
contrast, the PAIR-SEC security experiment does not. Since WhatsApp’s pairwise
channels, inheriting the design of Signal, tie the authenticity and integrity of key
exchange messages to that of the application messages, any adversary is able
to win the game if they are able to forge or modify the key exchange portion
of a ciphertext. It therefore follows from our immediate win convention that
all key exchange messages accepted during the experiment are honest, with the
possible exception of the final message if the adversary has won through an
authentication break. Leaving aside the possibility of state compromise, we can
now determine that, at any point in the experiment, all message keys are the
result of honestly generated and distributed key exchange messages, satisfying
the MS-IND experiment’s requirement that all key exchange messages are honest.

Satisfying Signal’s security predicates. This leaves state compromises. We now
have a class of permitted authentication breaks that do not end the experiment,
but do mean that some key exchange messages (and the keys resulting from
them) may not be honest. Theorem 1 of [25] specifies the set of such permitted
authentication breaks for which the security guarantees still apply under the
SIGNAL.FRESH predicate. To ensure that our adversary has not had any advan-
tages over an MS-IND adversary, we ensure that all keys we sample from the
MS-IND adversary satisfy this freshness predicate. We capture this requirement
in the WA-PAIR.AUTH and WA-PAIR.CONF security predicates in Figure 20, and
do so with direct reference to the Signal freshness predicate. Since the session
management is now performed by the protocol rather than the experiment, and
our methods of state compromise differ slightly, we provide a syntactic translation
of Signal’s security predicate in Appendix A.1.

Matching sessions. Since WA-PAIR protocols are expected to manage sessions
themselves, our security reduction needs to ensure that its session matching (and
that of the WA-PAIR channel) is consistent with the session matching of the
MS-IND security experiment for all sessions that are marked as clean within
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our security predicates. As seen in Figure 20, WhatsApp clients perform this
matching using a combination of the identity key xpk of their session partner and
the ephemeral pre-key of the session responder epk resp . In contrast, the MS-IND
security experiment (that we are building an adversary against) matches sessions
by the full sequence of keys that have been exchanged over the session, whereby
two sessions match if one is a prefix of or equal to the other. As above, if no
state compromise has occurred in this experiment, then either the adversary has
won the game through a forgery or all of the previous key exchange messages
were honest. In these cases, the session matching is equivalent. Consider the case
where πA,i

s and πB,j
r are communicating, and the adversary compromises the

session state of πB,j
r at index (p, q). If the adversary does not actively participate

in the key exchange, opting to passively observe traffic or rewrite the application
messages instead, we expect the asymmetric ratcheting mechanism to restore the
security of message keys at the next epoch, p+1. In this case, the sessions would
continue to match in both the MS-IND experiment and the WA-PAIR protocol,
and our security predicates would track the healing.

The session matching is not equivalent in all cases, however. If, instead, the
adversary participates in the key exchange protocol by playing the role of πA,i

s

to πB,j
r and/or πB,j

r to πA,i
s , the viewpoints of the keys exchanged in the session

will diverge between πB,j
r and πA,i

s . This results in non-matching sessions in the
MS-IND experiment and the security predicates provided by the analysis in [25].
In other words, as soon as the adversary actively participates in the key exchange
of a session, we expect no security guarantees for that session for the remaining
life of that session. Rather than relying on session matching, we capture this case
in the security predicates. The ‘SIGNAL.CLEAN(peerE, · )’ case in Appendix A.1
determines whether a peer’s contribution to a key exchange was clean. We do this
by ensuring that the key exchange part of the ciphertext was generated honestly
and not modified in transit.

Game 1. We replace the message keys output by the Signal two-party protocol
with random samples from the keyspace. We justify this through the security
reduction in Figure 27, which builds the multi-test variant of the MS-IND ex-
periment by emulating the PAIR-SEC experiment to our adversary A. When the
MS-IND experiment has its real-or-random bit b set to 0 (i.e. it outputs real keys),
A is playing an instance of the Game G0 experiment. While, when the MS-IND
experiment has its real-or-random bit b set to 1 (i.e. it outputs random keys), A
is playing an instance of the Game G1 experiment. Thus, the ability of A to
distinguish between the Game G0 and Game G1 experiments is bound by its
ability to win the MS-IND experiment:

AdvG0 ≤ AdvG1 +
1

2
· nd · (nd − 1) · ni · nm · AdvMS-IND

SIGNAL(λr, nd, 1, ni, nm)

We gain the factor of ‘ 12 · nd · (nd − 1) · ni · nm’ by the assumption that our
multi-test variant of the MS-IND experiment can be bound with respect to the
single-test version by applying a hybrid argument over the maximum number of
challenges.
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We can now consider the security of the messages themselves. Let Game A0
be a variant of the game where the adversary may not win by correctly guessing
the challenge bit (i.e. it is only possible to win the game through an authentication
break). Let Game C0 be a variant of the game where the adversary may not
win through either a forgery or replay attack (i.e. it is only possible to win the
game through a confidentiality break). In particular, we arrive at Game A0
by removing the ‘b = b′ ∧ PAIR.CONF(L)’ check from line 3 of the challenger
algorithm, and Game C0 by removing all instances of the win flag.

Applying the union bound we find that:

AdvG1 ≤ AdvA0 + AdvC0

Case 1: Authentication Break We now consider the advantage of our adver-
sary in winning Game A0 variant of the security game.

Game A1. At the beginning of the experiment, the challenger guesses which
message will trigger an authentication break. If the adversary wins the game
through an authentication break for a different message, the challenger aborts
the game.

AdvA0 ≤
1

2
· nd · (nd − 1) · ni · nm · AdvA1

Consider the following security reduction against a challenger for the EUF-
CMA security of the WA-AEAD AEAD scheme, CAEAD. We replace the encryption
and decryption of our guessed message with the appropriate queries to the CAEAD
challenger. If the Game A1 adversary is able to produce a forgery of this message,
it is also a valid forgery in the one-time EUF-CMA experiment. Thus:

AdvA1 ≤ AdvEUF-CMA
WA-AEAD(λ, 1)

See Figure 28 for explicit pseudocode detailing this reduction. This completes
our analysis of Case 1.

Case 2: Confidentiality Break We now consider the advantage of our adversary
in winning Game C0 variant of the security game. We do so through a sequence
of N = 1

2 ·nd · (nd− 1) ·ni ·nm games, one for each possible encryption challenge
in the experiment, and label them Game C1.0 to Game C1.N -1. Consider
the h-th game, Game C1.h:

Game C1.h. We replace the h-th encryption challenge with a random ciphertext.
Consider the following security reduction against a challenger for the IND$-

CPA security of the WA-AEAD AEAD scheme, CAEAD. We replace the encryption
and decryption of the h-th encryption challenge with the appropriate queries to
the CAEAD challenger. When the CAEAD challenger’s hidden bit is 0, we have that
our reduction is playing Game C1.h. When the CAEAD challenger’s hidden bit is
1, we have that our reduction is playing Game C1.h+1.
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It follows that an adversary that is capable of distinguishing two consecutive
games, Game C1.h and Game C1.h+1, may be repurposed to win this instance
of the IND$-CPA security experiment, giving:

AdvC1.h+1 ≤ AdvC1.h + AdvIND$-CPA
WA-AEAD(λ, 1)

See Figure 29 for explicit pseudocode detailing this reduction.
The final game, Game C1.N-1, does not use the challenge bit b and, therefore,

cannot leak any information about it to the adversary. Thus, the game cannot
be won with any advantage, giving AdvC1.N−1 = 0. Summarising Case 2, we have
that:

AdvC0 ≤
1

2
· nd · (nd − 1) · ni · nm · AdvIND$-CPA

WA-AEAD(λ, 1)

This completes our analysis of Case 2.
We now assemble a final bound using the results above, finding:

AdvPAIR-SECWA-PAIR,A(λ, nd, ni, nm)

≤ 1

2
· nd · (nd − 1) · ni · nm ·

[
AdvMS-IND

SIGNAL(λr, nd, 1, ni, nm) + AdvEUF-CMA
WA-AEAD(λ, 1) + AdvIND$-CPA

WA-AEAD(λ, 1)]
Observe that the above bound is a polynomial function of the experiment

parameters (nd, ni, nm), and the respective advantage against the security of each
primitive used. It follows that the advantage of any PPT adversary against the
security of WA-PAIR is at most a negligible function of the security parameter.

This concludes our proof. ut

5.2 Discussion

Our security analysis shows that the pairwise channels in WhatsApp are able
to provide confidentiality, integrity and authenticity for the messages sent over
them, under varying state compromise scenarios (loss of long-term identity keys,
medium-term secrets, and secret session state). In doing so, we have shown that
they are able to provide a form of forward security: compromise of the long-term
secrets, medium-term secrets, and secret session state does not compromise
the security of old messages (for the most part). The story for PCS is more
complicated, however.

Intuitively, a protocol that provides PCS is able to recover its security guaran-
tees after state compromise, providing that the adversary is passive while certain
actions have been taken place. Following [28, 30], our model captures pairwise
messaging schemes that allow multiple parallel sessions between parties. We need
to do this because the group messaging functionality in WhatsApp, Sender Keys,
relies on the pairwise messaging scheme for key distribution. Previous work on
Sender Keys in WhatsApp does not cover this functionality. In doing so, our
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model captures a stronger adversary with new capabilities. First, the adversary
may attempt to initiate new sessions after the two parties already have an active
session between them. Second, they are able to manipulate how target parties
decide which session to use by manipulating the delivery of ciphertexts. Third,
they are able to re-activate the use of old, compromised sessions at a time that
suits them. We now provide two concrete examples of how an adversary can
exploit these capabilities.

Example 1: Compromise of long-term keys. In this attack, the adversary
compromises the long-term and medium-term keys of party A after A and B have
initialised a session. In a single session setting, the adversary should not be able to
compromise messages sent between A and B, despite having access to one of their
long-term keys. However, in the multiple session setting, the adversary simply
initiates two new sessions, one between A and itself (masquerading as B using an
unknown key share attack) and another between B and itself (masquerading as
A). This attack can be executed at any time in the future, even after the original
session has recovered its security guarantees.

Example 2: Compromise of session state. In this attack, the adversary com-
promises the current session state of party A (between A and B). They may then
perform an active attack, whereby they forward application messages untouched,
but modify the attached key exchange messages to use key material they have
generated. In doing so, they have split the session into two: one between A and
itself (masquerading as B) and another between B and itself (masquerading as
A). If the adversary no longer has the resources to maintain an active mallory-in-
the-middle attack, they may refuse to deliver messages sent to that session. This
pauses the progression of the protocol. While this may result in clients setting
up a new uncompromised session, the adversary can manipulate the network,
coercing them into using the compromised channel at any point in the future
when they have the resources or inclination to do so.

Both of these attacks are possible against WhatsApp’s pairwise channels,
and are captured in the security predicates. Despite this, we have shown that
the pairwise messaging scheme used by WhatsApp can provide confidentiality
and authenticity of its messages in limited contexts. The notion of PCS that
it provides is substantially weaker than the notion of PCS that a single-session
variant of the two-party Signal protocol would achieve.

Effects on the security of group messaging. We now turn our attention to group
messaging, and consider to what extent these issues affect the security of group
messaging in WhatsApp. While compromise of a party’s long-term identity,
medium-term shared secrets, or the current secrets of a particular session all
enable slightly different forms of compromise, taking a high-level view of the
security of messages at the conversation level shows that there is little practical
difference between these compromise cases.

In order for the group messaging component to regain security post-compromise,
we require all pairwise channels used to distribute inbound Sender Keys sessions
to have regained both confidentiality and authenticity. Thus, an adversary may
apply the aforementioned attack strategies to either distribute an inbound session
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under their control (to break authenticity) or to capture a legitimate inbound
session as it is distributed (to break confidentiality). Only once these pairwise
links have healed, and all previously compromised Sender Keys sessions have
been rotated out of the cache, can security start to recover.

Additionally, since our analysis found no evidence of WhatsApp using a
hardware security module to protect a device’s long-term keys, it seems that
compromise of a device’s session state would (generally) entail the compromise
of its long-term secrets. It follows that practical compromise of the device state
would, in most cases, compromise all secret key material it currently contains.

Thus, we make the modelling trade-off not to capture fine-grained compro-
mise for pairwise channels in the wider security analysis of multi-device group
messaging (see Section 7.5). Instead, we map the corruption of a device (as
in DOGM’s CorruptDevice query) to the leaking of all of a device’s current se-
crets: their identity keys (through CorruptIdentity), their medium-term shared
secrets (through CorruptShared) and the current values of their session secrets
(through CorruptSession). This greatly simplifies our analysis, at the cost of
deriving overly-restrictive security predicates in Section 7.5.

6 Ratcheted Symmetric Signcryption

In this section we introduce a new variant of the symmetric signcryption (SS)
primitive defined in [36]: ratcheted symmetric signcryption (RSS). This captures
a single stage of a unidirectional Sender Keys session, i.e. an instance of the UNI
scheme as we describe in Section 3.3.

On a high-level the changes compared to [36] are as follows. First, the [36]
definition allows for multiple parallel groups, and multiple parallel users within a
single group that share the same symmetric state but sign with different keys.
This requires capturing both user and group identifiers within the formalism.
In contrast, the constructions we study utilise a separate symmetric key for
each sender. Thus, we are able to simplify our definition by focusing on a single
unidirectional channel. This also simplifies the inputs to the primitive and more
closely aligns with our setting.

Second, the [36] definition does not update their symmetric keys, and thus
does not capture forward secrecy. We modify the formalism of the primitive to
allow for the algorithms to output a symmetric state that ratchets forward, and
update their OAE notion to capture forward secrecy. Thus, the FS-GAEAD
formalism introduced in [6] is similar to ours in that it captures the ratcheting
nature of a single stage of secure group messaging. Although, it does not capture
the asymmetric nature of authentication present in the constructions we study
here. As such, the formalism we present can be seen as capturing the natural
combination of the symmetric ratchet captured in FS-GAEAD and the symmetric
signcryption in SS.

We now turn to formalising our primitive.

Definition 26 (Ratcheted Symmetric Signcryption). A ratcheted symmet-
ric signcryption protocol is a tuple of algorithms RSS = (Gen,Signcrypt,Unsigncrypt).
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1) The key generation algorithm, Gen, takes as input a security parameter
λ and outputs an updatable sending state sts ∈ ST and some updatable
receiving state str ∈ ST .

(sts, str)←$ Gen(1λ)

2) The signcryption algorithm, Signcrypt, takes as input a sending state
sts ∈ ST , an associated data field ad ∈ AD, and a plaintext message
m ∈M, and outputs an updated sending state st ′s ∈ ST and a ciphertext
c ∈ C.

(st ′s, c)←$ Signcrypt(sts,m, ad)

3) The unsigncryption algorithm, Unsigncrypt, takes as input a receiving
state str ∈ ST , a ciphertext message c ∈ C and an associated data field
ad ∈ AD and outputs an updated receiving state st ′r ∈ ST and a plaintext
message m ∈M or a special failure symbol ⊥.

(st ′r,m)← Unsigncrypt(str, c, ad)

These algorithms are defined with respect to a message space, M, associated data
space, AD, ciphertext space, C, and session state space ST .

We define correctness as follows.

Definition 27 (Correctness of Ratcheted Symmetric Signcryption). A
ratcheted symmetric signcryption scheme, RSS, is correct if ∀ st

(0)
s , st

(0)
r from

which Gen(1λ)→ (st
(0)
s , st

(0)
r ), and m(i) ∈M, ad(i) ∈ AD, then

st (j)r ,m(i) ←$ Unsigncrypt(st (j−1)
r ,Signcrypt(st (i)s ,m(i), ad(i)), ad(i))

iff there exists no previous call

st(k)r ,m(i) ←$ Unsigncrypt(st (j−1)
r ,Signcrypt(st (i)s ,m(i), ad(i)), ad(i)).

Intuitively, a secure ratcheted symmetric signcryption scheme should enforce
the confidentiality messages from those without possession of either the sending
or receiving state. Further, we expect the compromise of the current state (either
sending or receiving) to maintain the security of historical ciphertexts.

Definition 28 (Confidentiality of Ratcheted Symmetric Signcryption).
Let RSS be a ratcheted symmetric signcryption scheme. We define the advantage
of a probabilistic polynomial-time algorithm A in breaking the PFS-OAE-security
of RSS as

AdvPFS-OAE
RSS,A (λ, nq) = Pr[ExpPFS-OAE

RSS,λ,nq
(A) = 1]

where ExpPFS-OAE
RSS,λ,nq

(A) is defined in Figure 21.
We say that RSS provides online authenticated-encryption with perfect-forward

secrecy if AdvPFS-OAE
RSS,λ,nq

(A) is negligible in the security parameter λ for all PPT A
(when restricted to at most nq queries to the Send oracle).
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For authentication, we expect that only the holder of the sending session state
can produce messages that will be accepted by receiving sessions. We target a
notion akin to strong existential unforgeability under chosen message attack.
Definition 29 (Unforgeability of Ratcheted Symmetric Signcryption).
Let RSS be a ratcheted symmetric signcryption scheme. We define the advantage
of a probabilistic polynomial-time algorithm A in breaking the SUF-CMA-security
of RSS as

AdvSUF-CMA
RSS,A (λ, nq) = Pr[ExpSUF-CMA

RSS,λ,nq
(A) = 1]

where ExpSUF-CMA
RSS,λ,nq

(A) is defined in Figure 21.
We say that RSS provides strong-unforgeability under chosen-message attack

if AdvSUF-CMA
RSS,λ,nq

(A) is negligible in the security parameter λ for all PPT A (when
restricted to at most nq queries to the Send oracle).

ExpPFS-OAE
RSS,λ,nq

(A)

1 : b←$ {0, 1}; corr -user ← false

2 : sts, str ←$ RSS.Gen(λ)

3 : b′ ← ASend,Corrupt(str.pk)

4 : return (b = b′)

Corrupt

1 : corr -user ← true

2 : return sts

Send(m0,m1)

1 : if |m0| 6= |m1| : return ⊥
2 : (sts, cb)←$ RSS.Signcrypt(sts,mb)

3 : if corr -user = false : return cb

4 : return ⊥

ExpSUF-CMA
RSS,λ,nq

(A)

1 : b←$ {0, 1}; win ← 0;C← ∅
2 : sts, str ←$ RSS.Gen(λ)

3 : ASend,Receive(str)

4 : return (win)

Receive (c)

1 : str,m← RSS.Unsigncrypt(str, c)

2 : if (m 6= ⊥) ∧ (c /∈ C) : win ← 1

3 : if (m 6= ⊥) ∧ (c ∈ C) : C← C\{c}
4 : return m

Send (m)

1 : (sts, c)←$ RSS.Signcrypt(sts,m)

2 : C←∪ c

3 : return c

Fig. 21: Security Experiments for RSS.

We now analyse the security of UNI as a ratcheted symmetric signcryption
scheme. We highlight that Theorem 4 relies on XEd25519, as it is used in
WhatsApp and defined in [57], being a SUF-CMA-secure signature scheme with
advantage AdvSUF-CMA

XEd (λ).
Definition 30. WA-RSS is a ratcheted symmetric signcryption scheme that in-
stantiates the RSS formalism with the algorithms (WA-RSS.Gen, WA-RSS.Sign-
crypt, WA-RSS.Unsigncrypt) detailed in Figure 22.

We state and prove the security guarantees that WA-RSS provides.
Theorem 3 (Confidentiality of WA-RSS). The WA-RSS protocol instantiates
a ratcheted symmetric signcryption scheme that provides PFS-OAE security for
which the advantage of any adversary A in winning the ExpPFS-OAE

WA-RSS,λ,nq
(A) security

experiment is bound by

AdvPFS-OAE
WA-RSS (λ, nq) ≤ nq ·

(
2 ·AdvPRFHMAC(λ, 1)+AdvPRFHKDF(λ, 1)+AdvIND-CPA

AES-CBC(λ, 1)
)

under the assumptions that
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WA-RSS.Gen(1λ)

1 : ck ←$ {0, 1}λ; (gsk , gpk)←$ XDH.Gen(1λ)

2 : ustout ← Obj(ck , gsk); ust in ← Obj(ck , gpk)

3 : return (ustout , ust in)

WA-RSS.Signcrypt(ustout ,m, ad)

1 : Obj(ck , gsk)← ustout

2 : mk ← HMAC(ck , 0x01)

3 : ck ← HMAC(ck , 0x02)

4 : k ← HKDF(∅,mk , WhisperGroup, 50B)

5 : iv , ek ← k[0→ 15B], k[16→ 47B]

6 : c← AES-CBC.Enc(ek , iv ,m)

7 : cU ← Obj(UNI-CTXT, ad, c)

8 : σU ← XEd.Sign(gsk , cU )

9 : ustout ← Obj(ck , gsk)

10 : return ustout , (cU , σU )

WA-RSS.Unsigncrypt(ust in , (cU , σU ), ad)

1 : Obj(ck , gpk)← ust in

2 : assert XEd.Verify(gpk , cU , σU )

3 : assert ad = cU .ad

4 : mk ← HMAC(ck , 0x01)

5 : ck ← HMAC(ck , 0x02)

6 : k ← HKDF(∅,mk , WhisperGroup, 50B)

7 : iv , ek ← k[0→ 15B], k[16→ 47B]

8 : m← AES-CBC.Dec(ek , iv , cU .c)

9 : assert m 6= ⊥
10 : ust in ← Obj(ck , gpk)

11 : return ust in ,m

Fig. 22: A single group messaging stage in WhatsApp expressed within the RSS
formalism. We modify the description of UNI in Figure 12 by removing the session
identifier and message index, requiring the layer above to maintain and set the
appropriate values for ad.

1) HMAC can be modelled as a PRF for which the advantage of any PPT ad-
versary B in winning the ExpPRFHMAC,λ,1(B) experiment is bound by AdvPRFHMAC(λ, 1),

2) HKDF can be modelled as a PRF for which the advantage of any PPT ad-
versary B in winning the ExpPRFHKDF,λ,1(B) experiment is bound by AdvPRFHKDF(λ, 1),
and

3) AES-CBC is an IND-CPA secure one-time symmetric encryption scheme
for which the advantage of any PPT adversary B against the ExpIND-CPA

AES-CBC,λ,1(

B) experiment is bound by AdvIND-CPA
AES-CBC(λ, 1).

Proof. We bound the probability that the adversary, A, correctly guesses the
challenge bit b via the following sequence of games.

Game 0. This is the standard PFS-OAE security game for ratcheted symmetric
signcryption schemes instantiated with WA-RSS. This gives:

AdvPFS-OAE
WA-RSS (λ, nq) = AdvG0

Game 1. In this game we replace the message key mk and the chain key ck with
uniformly random values m̃k and c̃k until A issues a Corrupt query.

Specifically, we introduce a reduction B1 that initialises a PRF challenger CPRF
whenever A issues a Send(m0,m1) query. Since the initial ck is sampled uniformly
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at random, the initial CPRF’s sampling of ck internally proceeds identically as
the original security experiment. When computing mk and ck as the result of a
Send query, B1 instead queries the most recently initialised CPRF with 0x01 and
0x02, using the outputs to replace mk and ck (respectively). Upon receiving c̃k,
B1 initialises a new PRF challenger. If A issues Corrupt, then B1 simply returns
the most recently computed c̃k and no longer initialises PRF challengers.

We note that if the bit b sampled by CPRF is 0, then m̃k = HMAC(ck, 0x01) and
c̃k = HMAC(ck, 0x02). Otherwise, m̃k, c̃k are uniformly random values, and the
iterative replacement is sound. Thus, any adversary that can efficiently distinguish
between Game 1 and Game 0 can be turned into an efficient algorithm against
the PRF assumption. Bounding the advantage of B1 by that of any such PPT
adversary limited to at most nq encryption queries, then we have:

AdvG0 ≤ 2 · nq · AdvPRFHMAC(λ, 1) + AdvG1

Game 2. In this game we replace the initialisation vector iv and encryption key
ke with uniformly random values ĩv, k̃e until A issues a Corrupt query.

Specifically, we introduce a reduction B2 that initialises a PRF challenger
CPRF whenever A issues a Send(m0,m1) query. Since m̃k is sampled uniformly
by Game 1, the CPRF’s sampling of m̃k internally proceeds identically as in
Game 1. When computing iv and ke as the result of a Send query, B2 instead
queries the most recently initialised CPRF with PRF(WhisperGroup), using the
outputs to replace iv and ke respectively. Upon computing m̃k, B2 initialises a
new PRF challenger. If A issues Corrupt, then B2 simply returns the most recently
computed c̃k and no longer initialises PRF challengers.

We note that if the bit b sampled by CPRF is 0, then ĩv, k̃e = HKDF(
0,mk, WhisperGroup, 50B). Otherwise, ĩv and k̃e are uniformly random values,
and the iterative replacement is sound. Thus, any adversary that can efficiently
distinguish between Game 2 and Game 1 can be turned into an efficient algo-
rithm against the PRF assumption on HKDF. Bounding the advantage of B2 by
the advantage of any PPT adversary limited to at most nq encryption queries,
then we have:

AdvG1 ≤ nq · AdvPRFHKDF(λ, 1) + AdvG2

Game 3. In this game we demonstrate that any adversary that can distinguish
between an encryption of m0 and m1 can be turned into an algorithm that breaks
the IND-CPA security of AES-CBC.

Specifically, we introduce a reduction B3 that initialises a IND-CPA challenger
CIND-CPA whenever A issues a Send(m0,m1) query. Since k̃e is sampled uniformly
randomly by Game 2, the CIND-CPA’s sampling of k̃e internally proceeds identically
as in Game 2. When computing c← AES-CBC.Enc(ke, iv,mb) as the result of
a Send query, B3 instead queries the most recently initialised CIND-CPA with
(m0,m1, iv), using the outputs to replace the computation of the ciphertext c.
Upon computing k̃e, B3 initialises a new IND-CPA challenger. If A issues Corrupt,
then B3 simply returns the most recently computed c̃k and no longer initialises
IND-CPA challengers.
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We note that if the bit b sampled by CIND-CPA is 0, then c = AES-CBC.Enc(
ke, iv,m0), otherwise, c = AES-CBC.Enc(ke, iv,m1). Thus, any successful adver-
sary that could detect any of these replacements can be turned into an efficient
algorithm against the IND-CPA assumption. Bounding the advantage of B3 by
the advantage of any PPT adversary limited to at most nq encryption queries,
then we have:

AdvG2 ≤ nq · AdvIND-CPA
AES-CBC(λ, 1)

This completes our proof. ut

We find that the WA-RSS scheme provides authentication in the form of
existential-unforgeability under chosen-message attack.

Theorem 4 (Unforgeability of WA-RSS). The WA-RSS protocol instantiates
a ratcheted symmetric signcryption scheme that provides SUF-CMA security
for which the advantage of any adversary A in winning the ExpSUF-CMA

WA-RSS,λ,nq
(A)

security experiment is bound by

AdvSUF-CMA
WA-RSS (λ, nq) ≤ AdvSUF-CMA

XEd (λ, nq)

under the assumption that XEd25519 is itself a SUF-CMA secure digital signa-
ture scheme for which the advantage of any PPT adversary B in winning the
ExpSUF-CMA

XEd,λ,nq
(B) experiment is bound by AdvSUF-CMA

XEd (λ, nq).

Proof. We bound the advantage of A in triggering the authentication win condi-
tion via the following sequence of games.

Game 0. This is the standard SUF-CMA security game for ratcheted symmetric
signcryption schemes instantiated with WA-RSS. This gives:

AdvSUF-CMA
WA-RSS (λ, nq) = AdvG0

Game 1. In this game we abort if the adversary outputs a message that decrypts
successfully, but was not the output of a Send query.

Specifically, we introduce a reduction B. At the beginning of the experiment,
B initialises a SUF-CMA challenger CSUF-CMA, and replaces the generation of
the signing keys with CSUF-CMA’s output public key pair. Whenever A queries
Send(m), instead of computing the signature σ itself, B instead queries CSUF-CMA

with the ciphertext c. Finally, whenever A queries Receive(c), B will use the
output public key pk to verify the signature σ over c.

If the adversary makes outputs a message that decrypts successfully, but was
not the output of a Send query, then this means that the adversary has created a
signature σ′ that was not output by CSUF-CMA, but verifies correctly, thus creating
a forgery. Thus, if the adversary triggers our abort query, then it can be turned
into a successful adversary against the SUF-CMA security of XEd. Bounding the
advantage of B by the advantage of any PPT adversary, we find:

AdvG0 ≤ AdvSUF-CMA
XEd (λ, nq) + AdvG1
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We note that since Game 1 aborts whenever the adversary causes win ←
true, that it is not possible for the adversary to win in Game 1 and thus we
find:

AdvG0 ≤ AdvSUF-CMA
XEd (λ, nq)

This completes our proof. ut

7 WhatsApp in the DOGM Model

Thanks to the architectural similarities between WhatsApp and Matrix, we
adapt the DOGM model introduced in [3] for our security analysis. The DOGM
models group messaging protocols for which each user may have multiple devices,
capturing the relationship between users and their devices, as they change over
time.

We briefly describe our extensions to the DOGM model that capture device
revocation. We then describe the model and experiment in detail, highlighting
any changes from the original. Next, we describe WhatsApp’s multi-device group
messaging functionality in terms of this model, and proceed to analyse its security.

7.1 Capturing Device Revocation

We augment the DOGM model to capture device revocation by adding the
DOGM.Rev algorithm, which enables a user to revoke one of their linked devices.
It is executed by the user, taking as input their user identifier and long-term
secrets, generating a new public authenticator value for themselves and the device,
an optional ciphertext that may be used to notify other protocol sessions and
updating their private state.

The challenger tracks the current generation of a user’s multi-device state
within the security experiment. When a user is first created through a call to
DOGM.Gen, we initialise their generation to zero. We proceed to increment a
user’s generation every time they register or revoke a device, i.e. whenever a
call to DOGM.Reg or DOGM.Rev succeeds. The challenger stores the current
generation of each user in the dictionary Γ . We, additionally, expect each session
to track the current generation of each communicating partner within their local
state, accessible as π.Γ . We leave it to the protocol to propagate changes to users’
generations and, similarly, to correctly declare accurate values within π.Γ . We
expect each session to correctly enforce the user generation that they are aware
of. For example, if Alice A revokes device DA,i leading to generation γ, we expect
any session with the same generation stored for Alice, i.e. with π.Γ [A] = γ, not
to authenticate messages from DA,i as originating from A.27

27 A limitation of this model, as it stands, is that revoked devices are not able to be
re-registered to a user in the future.
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7.2 Device-Oriented Group Messaging Protocols
A DOGM protocol is a tuple of algorithms DOGM = (Gen, Reg, Init, Add, Remove,
Encrypt, Decrypt) with additional functionality (StateShare) [3]. For example,
WhatsApp Sender Keys sessions add and remove devices, not users. They similarly
send messages between groups of devices. As we increase the level of abstraction,
operations work with users rather than devices (e.g. users primarily interact with
the application at the level of users, not devices).

One can imagine an alternative design for multi-device group messaging for
which users are the primary unit of action. In the case of WhatsApp, this could
take the form of Sender Keys sessions between users, where a user’s devices would
share the necessary key material and/or plaintexts themselves, using a separate
protocol.28

The DOGM model bridges the gap between lower-level device-oriented proto-
cols and higher-level user-oriented protocols by capturing which device belongs
to which user (and vice versa) at any particular point in time. This enables our
security result to capture message attribution at the user level, and to determine
different levels of trust between devices. This latter point becomes important
when implementing features such as history sharing. Thus, we start by describ-
ing the DOGM.Gen and DOGM.Reg algorithms which are used to manage the
cryptographic identities of users, their devices and the links between them:

• The user creation algorithm, Gen, models the generation of a user’s long-
term cryptographic identity.

pkA, skA ←$ Gen(A)

It takes as input a user identifier, A ∈ Uid, before outputting a public and
secret authenticator pair, pkA ∈ Pk and skA ∈ Sk.
This is instantiated in WhatsApp by the WA.NewPrimaryDevice algorithm.
In the security experiment, the resulting user cryptographic identities
are distributed honestly by the challenger. In practice, users rely on a
combination of their trust in the WhatsApp server, manual out-of-band
verification between users, or WhatsApp’s key transparency mechanism
to ensure this mapping is correct. Thus the provision of such public-key
infrastructure is outside the scope of our analysis.

• The device registration algorithm, Reg, models the creation of a new device,
the initialisation of their cryptographic identity and their linking with
a user’s cryptographic identity (by simulating the results of a linking
sub-protocol).

pkA, skA, dpkA,i, dskA,i, c←$ Reg(A,DA,i, skA, pkA)

28 Indeed, previous versions of WhatsApp used such a design: each user had a primary
device which acted as proxy to the messaging protocol on behalf of companion
devices. Communication between a user’s devices was orthogonal (and used a different
protocol) to communication between users. Additionally, [23] have previously proposed
a user-oriented design to implement multi-device functionality for Signal.
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It takes as input a user identifier, A ∈ Uid, the chosen device identifier,
DA,i ∈ Did and the user’s secret and public authenticators, pkA ∈ Pk and
skA ∈ Sk, before returning the updated user authenticators, pkA ∈ Pk

and skA ∈ Sk, new device authenticators, dpkA,i ∈ Pk and dskA,i ∈ Sk,
alongside an optional ciphertext, c ∈ C (or a failure state ⊥).
WA.NewCompanionDevice and WA.LinkDevice instantiate DOGM.Reg.
We do not model the out-of-band verification between the primary device
and companion devices. Instead, the challenger simulates this functionality
within the security experiment.

We augment the DOGM model [3] to allow users to revoke their linked
devices via DOGM.Rev. This allows a user to indicate to their communication
partners that they have lost access to a device, and thus their partners should
no longer encrypt to that device. WhatsApp implements device revocation by
sharing an updated device list through the server. They additionally notify their
communicating partners of such changes using metadata embedded within the
Signal pairwise channels (see Section 3.1).

• The revocation algorithm, Rev, enables a user to revoke one of their linked
devices.

pkA, skA, dpkA,i, dskA,i, c←$ Rev(A,DA,i, pkA, skA, dpkA,i, dskA,i)

It takes as input a user identifier, A ∈ Uid, the identifier of the device to
be removed, DA,i ∈ Did, a user public and secret authenticator, pkA ∈ Pk

and skA ∈ Sk, and a device public and secret authenticator, dskA,i ∈ Sk
and dpkA,i ∈ Sk, then returns updated public and secret authenticator
values for the user, pkA ∈ Pk and skA ∈ Sk, updated public and secret
authenticator values for the device, dpkA,i ∈ Pk and dskA,i ∈ Sk, as well
as an optional ciphertext, c ∈ C.

Note that, while both WhatsApp and the public-key orbits formalism from Sec-
tion 4 support the ability to refresh a user’s generation without making changes
to their device composition, we choose not to capture this in our model. While
this adds meaningful guarantees in practice, by providing a concrete time bound
on how long it takes to detect device revocation, the DOGM does not capture this
since there is no clock with which to implement such expiry. This is a limitation
of our model, a choice we made in order to control the complexity of the model.

In the DOGM model, each group messaging session captures a series of
unidirectional channels between one sender and many recipients.29 A group can

29 This maps closely to Sender Keys style group messaging, but does not naturally
generalise outside of it. For example, MLS style group messaging protocols derive
a shared secret used by all members of the group to send messages, which may be
more naturally modelled as a single shared channel.
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then be captured as a composition of these unidirectional channels, one for each
group member.30

In the DOGM experiment, the user and device identities created using
DOGM.Gen and DOGM.Reg can be re-used across many group messaging sessions,
both within the same logical group and across multiple logical groups, all of
which may run simultaneously. The following algorithms are used to initialise,
manage and use such messaging sessions in the DOGM:

• The session initialisation algorithm, Init, models the creation of a new
unidirectional messaging session, in the role of either sender or recipient,
associated with a particular group.

dskA,i, st , gid ←$ Init(A,DA,i, ρ, dskA,i, gid)

This algorithm should be run once for each device that participates in
a session, before Add, Remove, Encrypt or Decrypt. It takes as input the
user identifier, A ∈ Uid, device identifier, DA,i ∈ Did, role of the session
ρ ∈ {snd, rcv}, a secret authenticator, dskA,i ∈ Sk and (optional) group
identifier, gid ∈ Gid, before returning an updated secret authenticator,
dskA,i ∈ Sk, session state, st ∈ ST , and group identifier (or a failure state
⊥).

• The membership management algorithms, Add and Remove, model the
addition or removal of a device from a session (respectively). To add (or
remove) the device from a particular messaging session, the appropriate
algorithm is expected to be executed by every participating session in the
group.

dskA,i, st , c
′ ←$ Add(dskA,i, st , A,DA,i, c)

dskA,i, st , c
′ ←$ Remove(dskA,i, st , A,DA,i, c)

They take as input a secret authenticator, dskA,i ∈ Sk, session state,
st ∈ ST , user identifier, A ∈ Uid, device identifier, DA,i ∈ Did, and (op-
tional) ciphertext, c ∈ C, before returning an updated secret authenticator,
dskA,i ∈ Sk, session state, st ∈ ST , and (optional) ciphertext, c ∈ C (or a
failure state ⊥).

• The messaging algorithms, Encrypt and Decrypt, model sending and re-
ceiving messages using an outbound (or inbound) session (respectively).

dskA,i, st , c←$ Encrypt(dskA,i, st ,m)

dskA,i, st ,m← Decrypt(dskA,i, st , c)

30 Our security notion, described in Section 7.3, does not capture logical groups explicitly,
however. Thus, Alice’s sending session may have a different view of the group
membership than Bob’s sending session. This differs from the approach taken in [8],
where the security experiment ensures that sessions have a synchronized viewpoint
of group membership.
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The encryption algorithm takes as input a secret authenticator, dskA,i ∈
Sk, session state, st ∈ ST , and the message to be sent, m ∈ M, before
returning an updated secret authenticator, dskA,i ∈ Sk, session state,
st ∈ ST , and ciphertext, c ∈ C.
The decryption algorithm takes as input a secret authenticator, dskA,i ∈
Sk, session state, st ∈ ST , and ciphertext, c ∈ C, before returning an
updated secret authenticator, dskA,i ∈ Sk, session state, st ∈ ST , and the
decrypted message, m ∈M (or a failure state ⊥).
While these algorithms may be used to exchange non-application messages,
the decryption algorithm must only return a non-null result in the plaintext
slot if the given ciphertext included an application message that was
accepted by the session.

The DOGM model captures history sharing, where devices owned by the
same user can share their messaging history. As we saw in Section 3.3, Whats-
App implements history sharing by directly sharing the plaintext transcript
in a newly encrypted message.31 State sharing functionality is captured with
DOGM.StateShare:

• The state sharing functionality, StateShare, models the sharing of secret
state between devices. While, nominally, a sub-protocol in its own right, it
is represented by a single algorithm that encapsulates the requisite logic
for each participant in the protocol.

dskA,i, st , c←$ StateShare(dskA,i, st , A,DA,i, t , z , c)

It takes as input a secret authenticator, dskA,i ∈ Sk, secret state, st ∈ ST ,
and (optionally) a user identifier, A ∈ Uid, device identifier, DA,i ∈ Did,
stage index, t ∈ N, (optional) message index, z ∈ N, and ciphertext, c ∈ C.
It outputs an updated secret authenticator, dskA,i ∈ Sk, session state,
st ∈ ST , and (potentially) a ciphertext, c ∈ C, the special failure symbol
c = ⊥, or a special success symbol c = >.

A DOGM protocol is defined in terms of a number of data structures, which
we represents as sets of the following types. Namely, (a) user identifiers, Uid,
(b) device identifiers, Did, (c) group identifiers, Gid, (d) public authentication
values, Pk, (e) secret authentication values, Sk, (f) session states, ST , (g) plaintext
messages, M, and (h) ciphertext messages, C.

We expect secret authentication values to have a particular structure, de-
pending on whether they authenticate a user or a device. In other words,
Sk = uSk ∪ dSk, where:

• uSk = N×{0, 1}∗ with each element (γ, st) consisting of the user’s current
generation, γ ∈ N, and some arbitrary state, st ∈ {0, 1}∗.

31 An alternative approach, taken by Matrix [3, 2], shares the key material for histori-
cal ciphertexts. This has the advantage of allowing clients to decrypt the original
ciphertexts (while undermining some of the guarantees we would expect to receive
from Matrix’ key rotation mechanisms) [3].
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• dSk = {0, 1}∗ with each element consists of some arbitrary state st ∈
{0, 1}∗.

We expect DOGM session state to have the following structure:
• A ∈ Uid – the user identifier for this party.

• DA,i ∈ Did – the device identifier for this party.

• gid ∈ Gid – the group identifier for this session.

• ρ ∈ {snd, rcv} – the role of the party in the current session. Note that
parties can be directed to act as either a snd or rcv in concurrent or
subsequent sessions.

• t ∈ N – the current stage of the session.

• z ∈ N – the current message index of the current stage.

• status ∈ {⊥, active, reject} – the status of the session, initialised by ⊥.

• CU [0], . . . , CU [np] ∈ Uid – the current set of intended communication
partners, where CU [0] is the sending user.

• CD[0, 0], . . . , CD[0, nd], . . . CD[np, nd] ∈ Did – the current set of devices
associated with the communication partners CU [0] . . . CU [np], where
CD[0] is the sending device.

• T [t , z ] ∈ C∗∪{⊥} – the z -th message sent in the t-th stage sent or received
by πA,i

s . We use |T [t ]| as the shorthand for the first value z such that
T [t , z ] = ⊥, or the number of messages accepted in the t-th stage.

• st ∈ {0, 1}∗ – any additional state used by the session during protocol
execution. We allow the members of st to be accessed directly as if they
were direct members of π . In other words, if π = (. . . , st = (x, y)), x and
y can be accessed as π.x and π.y respectively.

In order to support device revocation, we additionally require that each session
stores a ‘Γ ’ field that maps from user identifier to their expected device list
generation, Γ = Map{A :γ} ∈ Uid × N.

7.3 Security of Device-Oriented Group Messaging Protocols

The DOGM security experiment aims to determine the security guarantees
of messages sent within groups, as the membership of groups and the make-
up of a user’s devices change over time, in the face various user and device
secrets being leaked or compromised. This security experiment does not aim
to provide assurances towards the consistent view of group membership among
devices, nor does it aim to determine additive or subtractive closeness over group
membership [60].
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Intuitively, a message is considered authentic if it is correctly attributed to
the user that sent it, it is linked to the logical group that it was sent to and the
message contents cannot be modified by anyone other than the sending device.
Under certain constraints, devices which are not a message’s sender may be
able to modify its attribution, linked session or contents without breaking the
authenticity of the message from the perspective of the model. In WhatsApp, for
example, a device that is entrusted to share history may be allowed to “break”
the authentication guarantees of the message as an expected limitation of the
protocol, but only to devices that belong to the same user.

Similarly, a message is confidential if only devices that were part of the group
(from the perspective of the message’s sending device) can decrypt it. Under
certain constraints, other devices may also be able to decrypt messages without
breaking the secrecy of the message. For example, if a device is linked under the
same user as a device which was part of the session when a message was sent,
we would expect them to be able to decrypt such a message through the history
sharing feature.

The experiment starts by initialising a pre-determined number of users. The
adversary may then corrupt a selection of users by requesting their long-term
secrets. Once this initial stage is complete, the adversary is given complete control
of the experiment, where they may trigger the creation of new devices (registered
to the user of their choice), create new messaging sessions and trigger the sending
and receiving of messages of their choice. They may also corrupt device long-term
secrets or session secrets during this period.

We capture message authenticity through a forgery game: if the adversary is
able to trick a session into accepting a message that they should not be able to,
the adversary wins the experiment. Similarly, we capture message confidentiality
using a distinguishing game: when requesting a session to encrypt a plaintext,
the adversary can submit two challenge plaintexts. The challenger decides, based
on a coin flip at the start of the experiment, whether to return encryptions of
the first or second plaintext. These are the challenge ciphertexts. At the end
of experiment, the adversary returns a guess as to whether the challenger was
returning the first or second plaintexts during the experiment.

Since we allow the adversary to corrupt secrets, we expect them to be able to
win the game under some circumstances. For example, if the adversary directly
compromises a particular sending session’s state, we would expect them to be
able to construct messages that matching recipient sessions will accept (until/if
PCS is achieved). We track these circumstances using two predicates, CONF and
AUTH, for confidentiality and authenticity, respectively.

State sharing can affect the security of the protocol in two key ways. First,
it can allow malicious devices to inject or edit messages into a target device’s
message transcript, breaking the authentication of the protocol. Second, it can
enable a malicious device to access the plaintext of (or distinguish between)
challenge ciphertexts, breaking the confidentiality of the protocol. We must be
careful to capture these properties in the security experiment without providing
the adversary with functionality that undermines the security of the protocol.
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Say, for example, that the adversary (a) submits a challenge to a session π ,
(b) orchestrate a state share to a different session π′, before (c) compromising
the second session. It is important that the challenger is able to determine that
the compromise of π′ gave the adversary access to a challenge ciphertext. Since
the challenger stores a set of session states marked as challenge ciphertexts in
C, the state sharing oracle takes care to track the propagation of the challenge
ciphertext by marking the recipient state in C.

Security Experiment The security experiment, defined in detail by Figure 23,
begins with C running DOGM.Gen(A) np times to generate a public key pair
(pkA, skA) for each party A ∈ {P1, . . . , Pnp

} and delivers all public-keys pkA to
A. A can now issue CorruptUser queries to compromise the user secrets. After, C
randomly samples a bit b←$ {0, 1}, sets a flag win ← 0, and interacts with A
via the queries in O (except CorruptUser).

Eventually, A terminates and outputs a guess b′ of the challenger bit b. A
wins the DOGM experiment if b′ = b, and the confidentiality predicate CONF is
satisfied, or if win has been set to 1 by a call to Decrypt, and the authenticity
predicate AUTH was satisfied at the time of forgery. Before setting win ← 1, C
checks that the experiment satisfies the authenticity predicate AUTH. To indicate
that A has won, C immediately terminates the experiment and returns 1.

We now describe how the adversary in the DOGM security experiment may
interact with the challenger; in turn, describing how an attacker may interact
with sessions of the WhatsApp protocol. The adversary interacts with C via the
queries within O (each of which is defined in Figure 23). The adversary is in
complete control of the communication network – able to modify, inject, delete
or delay messages. It is through the interface of these queries that this control is
defined.

We, additionally, allow them to compromise secrets at three levels: (a) adaptive
compromise of the current session state, (b) adaptive compromise of a device’s
long-term key material, and (c) non-adaptive compromise of a user’s long-term
key material. The first models state-compromising attacks, such as temporary
device access or the accidental reveal of session backups. The latter two capture
key misuse in addition to stronger forms of state-compromising attacks. This
enables the model to capture a nuanced understanding of PCS and forward
secrecy (FS).

In the first stage of the experiment, the adversary is given access to a single
oracle.32

• The user corruption oracle, CorruptUser, gives the adversary access to the
secret authenticator of the user A[A]. Providing the user exists, i.e. 0 ≤
A < np − 1, the challenger returns skA to the adversary.

CorruptUser(A)→ {skA,⊥}

32 The experiment has a pre-determined maximum number of users, all of which are
initialised by the challenger before handing control over to the adversary.
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IND-CCADOGM
np,nd,ni,ns,nm

(A)

1 : // Initialise challenge bit, b, win flag, win, challenges, C, state sharing log, Sh, device map, D, & device session counter, S.

2 : b←$ {0, 1}; win ← 0; C← 0; Sh← 0; D← Map{ · :∅}; S← Map{ · : 0}
3 : // Initialise np user identities.

4 : for 0 ≤ A < np : pkA, skA ←$ DOGM.Gen(A)

5 : // Allow the adversary to statically compromise a subset of users.

6 : ast ← ACorruptUser(exp-init, [pk0, pk1, pk2, . . . , pknp−1])

7 : // Next, give control back to the adversary who may now orchestrate a number of DOGM sessions, and manage user devices.

8 : b′ ← AO\{CorruptUser}(exp-main, ast)

9 : // Did adversary break authentication, by causing an oracle to set the win flag, or confidentiality, by guessing challenge bit?

10 : if win ∨ ( b = b′ ∧ DOGM.CONF ) : return 1

11 : else : return 0

Create(A, i) // Create new device and register with user

1 : assert i /∈ D[A] ∧ αB
j 6= (revoke, γ)

2 : dpkA,i, dskA,i, pkA, skA, c

3 : ←$ DOGM.Reg(A, i, skA, pkA)

4 : // Pre-populate public user authenticators.

5 : dskA,i.U← Map{B :pkB for 0 ≤ B < np}
6 : D[A]←∪ {i}; S[A, i]← 0

7 : return dpkA,i, c

Init(A, i, ρ, gid) // New unidirectional session

1 : s← S[A, i] + 1; S[A, i]← s

2 : dskA,i, π
s
A,i ← DOGM.Init(A, i, ρ, dskA,i, gid)

3 : return s

AddMember(A, i, s, B, j, c) // Add member

1 : dskA,i, π
s
A,i, c

′ ←$ DOGM.Add(dskA,i, π
s
A,i, B, j, c)

2 : return c′

RemoveMember(A, i, s, B, j, c) // Remove member

1 : dskA,i, π
s
A,i, c

′ ← DOGM.Remove(dskA,i, π
s
A,i, B, j, c)

2 : return c′

Revoke(A, i)

1 : pkA, skA, dpkA,i, dskA,i, c

2 : ← DOGM.Rev(A, i, pkA, skA, dpkA,i, dskA,i)

3 : αB
j ← (revoke, skA.γ)

4 : return c

∗Revoked?(A, i, s, B, j, γ′) :=(
αB
j = (revoke, γ) ) st γ′ ≥ γ

)
∧

(
B 6∈ corr -user

)

Encrypt(A, i, s,m0,m1) // Encrypt message for session

1 : if |m0| 6= |m1| : return ⊥
2 : dskA,i, π

s
A,i, c←$ DOGM.Encrypt(dskA,i, π

s
A,i,mb)

3 : if c = ⊥ : return ⊥
4 : // Has message been encrypted for a known revoked device?

5 : if ∃ (B, j) ∈ πA,i
s .CD st ∗Revoked?(A, i, s, B, j, πA,i

s .Γ [B]) :

6 : win ← 1

7 : if m0 6= m1 : C←∪ (c, A, i, s, πA,i
s .t, πA,i

s .z)

8 : return c

Decrypt(A, i, s, c) // Receive message for session

1 : dskA,i, π
s
A,i,m← DOGM.Decrypt(dskA,i, π

s
A,i, c)

2 : B, j ← πA,i
s .CD[0]; t, z, · ← πs

A,i.T | − 1|; γ ← πA,i
s .Γ [B]

3 : if m = ⊥ : // non-application message or failure

4 : return ⊥
5 : // Sent by known revoked device?

6 : revoked ← ∗Revoked?(A, i, s, B, j, γ)

7 : replay ← ( c ∈ πs
A,i.T )

8 : forgery ← ∗Forgery?(A, i, s, B, j, c)

9 : win ← revoked ∨ replay ∨
(
forgery ∧

10 : DOGM.AUTH[A, i, s, γ,B, j, t, z]
)

11 : if (c, · ) in C : return ⊥
12 : return m

StateShare(A, i, s, t, z, B, j, c) // Orchestrate state share

1 : dskA,i, π
s
A,i, c

′

2 : ←$ DOGM.StateShare(dskA,i, π
s
A,i, B, j, t, z, c)

3 : // State sharing with known revoked device?

4 : if c′ 6= ⊥ ∧ ∗Revoked?(A, i, s, B, j, πA,i
s .Γ [B]) : win ← 1

5 : if c′ = > : // π
A,i
s accepted state share

6 : injection ← @ ( · , c, B, j, · , t, z, A, i, · ) in Sh

7 : win ←
(
injection ∧

8 : DOGM.AUTH[A, i, s, πA,i
s .Γ [B], πA,i

s .CD[0], t, z]
)

9 : Sh←∪ (c, c′, A, i, s, t, z, B, j, πA,i
s .Γ [B])

10 : return c′

CorruptUser(A)

1 : corr -user ←∪ A;

2 : return skA

CorruptDevice(A, i)

1 : corr -dev ←∪ (A, i)

2 : return dskA,i

Compromise(A, i, s)

1 : corr -sess ←∪ (A, i, s, πA,i
s .t, πA,i

s .z)

2 : return πs
A,i

∗Forgery?(A, i, s, B, j, c) :=

@ (r, t, z) st c ∈ πr
B,j .T [t, z] // Does there not exist an honest session that sent a matching

∧
(
πs
A,i.ρ = rcv ∧ πr

B,j .ρ = snd
)

// ciphertext, is itself a sending session for which

∧
(
B = πs

A,i.CU [0] ∧ (B, j) = πs
A,i.CD[0]

)
// recipient marked as its sending session,

∧
(
A ∈ πr

B,j .CU ∧ (A, i) ∈ πr
B,j .CD

)
// and recipient is one of the intended recipients?

Fig. 23: Security experiment defining the security of DOGM protocols with
revocation. We highlight changes from the original DOGM security experiment.
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This captures static compromise of the user’s long-term key material. Once
complete, the adversary returns control to the challenger, which initiates the
second stage of the experiment. In this stage, the adversary is given access to
the following oracles.

• The device creation oracle, Create, allows the adversary to trigger the
creation of new devices.

Create(A, i) $→ {dpkA,i,⊥}

• The session initialisation oracle, Init, allows the adversary to trigger the
initialisation of a new session for the device DA,i representing the user A.

Init(A, i, ρ, gid) $→ {(s, gid), (⊥)}

• The member addition oracle, AddMember, allows the adversary to direct a
session, πA,i

s , to add a device, DB,j , representing the party B, to its group
messaging session.

AddMember(A, i, s, B, j, c) $→ {c,⊥}

• AddMember(A, i, s, B, j, c) 7→ {c′,⊥}: allows A to direct session πA,i
s to

add a new device DB,j owned by party B to their group messaging session.

• The member removal oracle, RemoveMember, allows the adversary to
direct a session, πA,i

s , to remove a device, DB,j , representing the party B,
from its group messaging session.

RemoveMember(A, i, s, B, j, c) $→ {c,⊥})

• The device revocation oracle, Revoke, allows the adversary to direct party A
to revoke device (A, i). This, in turn, triggers the challenger to execute the
revocation algorithm, Rev, on behalf of party A and return the resulting
ciphertext, if output, to the adversary.

Revoke(A, i) 7→ {c,⊥}

• The encryption oracle, Encrypt, allows the adversary to direct a session,
πA,i
s , to encrypt one of two messages, m0 or m1, depending on the challenge

bit b.
Encrypt(A, i, s,m0,m1) $→ {c,⊥}

• The decryption oracle, Decrypt, allows the adversary to direct a session
πA,i
s to process a message and receive its output.

Decrypt(A, i, s, c)→ {m′,⊥}
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• The state sharing oracle, StateShare, allows the adversary to orchestrate
state sharing between two sessions, πA,i

s and πB,j
r , with state relating to

stage t and (optionally) message z. Here, πA,i
s is the executing session and

πB,j
r the session they are interacting with. The ciphertexts c and c′ are

used for communication between the two sessions.

StateShare(A, i, s, B, j, t, z, c) $→ {c′,⊥}

• The device corruption oracle, CorruptDevice, gives the adversary access
to the current value of the secret device authenticator value, dskA,i. C
returns dskA,i to A.

CorruptDevice(A, i)→ {dskA,i,⊥}

• The user corruption oracle, CorruptUser, gives the adversary access to the
current session state of the session πA,i

s .

Compromise(A, i, s)→ {πA,i
s ,⊥}

The DOGM security experiment is parameterised by ΛDOGM = (np, nd, ni, ns,
nm) where

• np is the number of cryptographic identities for users in the experiment,

• nd is the maximum number of devices (each identified by a cryptographic
identity) that may be associated with each user in the experiment,

• ni is the maximum number of DOGM protocol sessions the adversary may
initiate (for each device),

• ns is the maximum number of messaging stages allowed in each protocol
session, and

• nm is the maximum number of messages that may be sent in each stage.
We use πA,i

s both as an identifier for the s-th DOGM session executed by
A’s device DA,i and to identify the collection of per-session variables that it
maintains.

7.4 Expressing WhatsApp as a DOGM Protocol

We start by mapping a subset of WhatsApp’s functionality into the DOGM with
revocation model, capturing user and device cryptographic identity management
(incl. device revocation), group messaging and history sharing. We do so as
follows.

Definition 31. WA-DOGM is a device-oriented group messaging protocol with
revocation that instantiates the DOGM with revocation formalism with algorithms
(Gen, Reg, Rev, Init, Add, Remove, Encrypt, Decrypt, StateShare) in Figures 24
to 26.
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Gen(ipkp
is
=∅) // New primary device

1 : iskp, ipkp, orb ←$ WA-PO.Setup()

2 : skA ← Obj(iskp : iskp, orb :orb, γ :orb.γ)

3 : pkA ← Obj(ipkp : ipkp, orb :orb, γ :orb.γ)

4 : return pkA, skA

Reg(ipkp, ipkc
is
=∅, skA, pkA) // Register companion device

1 : pst , (xpk , spk), epks ←$ WA-PAIR.Init(1λ)

2 : σxpk ← XEd.Sign(pst .isk , FICTION ‖ xpk)
3 : σspk ← XEd.Sign(pst .isk , 0x05 ‖ spk)
4 : skb ← Obj(SKB, pst .ipk , spk , σspk , epks, xpk , σxpk )

5 : skA.orb ←WA-PO.Attract(skA.iskp, pst .ipkc, skA.orb)

6 : skA.orb ←WA-PO.Attract(pst .iskc, pkA.ipkp, skA.orb)

7 : skA.γ ← skA.orb.γ

8 : pkA.orb ← skA.orb

9 : pkA.γ ← skA.γ

10 : dpkA,i ← Obj(

11 : ipkp :pkA.ipkp, ipk :pst .ipk ,

12 : orb : skA.orb, skb : skb, γ :orb.γ)

13 : dskA,i ← Obj(

14 : ipkp :pkA.ipkp, isk :pst .isk , ipk :pst .ipk , pst :pst ,

15 : PO :Map{ipkp :orb}, SKB :Map{pst .ipk : skb},
16 : γ :orb.γ)

17 : return dpkA,i, dskA,i, pkA, skA, (dpkA,i)

Reg(ipkp, ipkc
is
= ipkp, skA, pkA) // Register primary device

1 : pst , (xpk , spk), epks ←$ WA-PAIR.Init(1λ)

2 : σxpk ← XEd.Sign(skA.iskp, FICTION ‖ xpk)
3 : σspk ← XEd.Sign(skA.iskp, 0x05 ‖ spk)
4 : skb ← Obj(SKB, pkA.ipkp, spk , σspk , epks, xpk , σxpk )

5 : dpkA,i ← Obj(

6 : ipkp :pkA.ipkp, ipk :pkA.ipkp,

7 : orb :pkA.orb, skb : skb, γ :orb.γ)

8 : dskA,i ← Obj(

9 : ipkp :pkA.ipkp, isk : skA.iskp, ipk :pkA.ipkp,

10 : PO :Map{ipkp :orb}, SKB :Map{ipkp : skb},
11 : pst :pst , γ :orb.γ)

12 : return dpkA,i, dskA,i, pkA, skA, (dpkA,i)

Rev(ipkp, ipkc, pkA, skA, dpkA,i, dskA,i) // ipkp revokes ipkc

1 : skA.orb ←WA-PO.Repel(skA.isk , dpkA,i.ipkc, skA.orb)

2 : skA.γ ← skA.orb.γ

3 : pkA.orb ← skA.orb

4 : pkA.γ ← skA.γ

5 : return pkA, skA, dpkA,i, dskA,i, (pkA)

Fig. 24: Device management in WhatsApp expressed within the DOGM with
revocation formalism.
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User and device management. We capture WhatsApp’s multi-device functionality,
which provides cryptographic identity management for users and their devices,
using Gen, Reg and Rev:

• Gen captures the creation of a new primary device and its long-term keys
(as described by PO.Setup), since a user in WhatsApp is cryptographically
equivalent to their primary device. Note that, since Gen generates these
identities, we are not able to determine the user identifier before calling
the algorithm and require it to be null.

• Reg captures the device-specific setup of the primary device, as well as
the initialisation and linking of new companion devices.
Similar to Gen, no device identifier is given to this algorithm when regis-
tering a new companion device because the device identifier is not known
at call time (since the public identity keys used as the device identifier
has not been generated yet). An exception to this is when registering the
primary device, where the device identity is known to the caller. In this
case, we expect it to match the user identifier.
We return the updated multi-device state to the adversary as a ciphertext.
We also store and initialise storage for multi-device states, called PO,
and for Signal key bundles SKB. We store these in isk merely for the
convenience to be available whenever we need them. Note that, modulo
cryptography controls, the adversary can fill these at will by sending the
appropriate ciphertexts of type PO or SKB, cf. Decrypt.

• Rev captures the revocation of a companion device. The challenger executes
PO.Repel on behalf of the primary device, outputting an updated multi-
device state. We return the updated state to the adversary as a ciphertext.

Recall that the challenger distributes the initial version of each user’s public
authenticator to each device in a trusted manner, while the public authenticators
of devices are distributed through the adversary. Thus, how we choose to split
information between the user and device authenticators will affect to what extent
we capture device management in our security analysis.

Importantly, we would like to ensure that our analysis captures how clients
manage and verify the structures that define one another’s device composition. In
each user public authenticator, we store the identity key of their primary device,
accompanied by their public orbit state and generation. Since the orbit state of
a user changes during the experiment, as new devices are registered and existing
devices are revoked, it might be necessary for the adversary to propagate these
changes to the devices of communicating partners. The decryption algorithm,
described below, provides the adversary with a means to do just this, provided
they can pass the requisite cryptographic checks. As they do so, the adversary may
need to perform the work of the WhatsApp server in merging the various updates
and provided the correct accompanying information. Thus, we capture the ability
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of a malicious server to attempt to distribute fake or erroneous multi-device
states (but provide an initial distribution that is honest).

Remark 3. As discussed in Sections 4 and 5, WhatsApp utilises device identity
keys for both XEd signatures and XDH key exchange. Since a proof of the
joint security of such constructions does not exist, we choose to model the
dual use of such keys with two separate key pairs: (isk , ipk) ←$ XEd.Gen(
1λ) and (xsk , xpk) ←$ XDH.Gen(1λ). This separation requires us to provide a
cryptographic link from the signature key pair, (isk , ipk), to the key exchange
key pair, (xsk , xpk). We highlight this modelling choice by using FICTION as the
domain separator.

Group messaging. Our description of WhatsApp in Section 3 follows the whitepa-
per and implementation in working with logical groups. However, the group
messaging protocol in WhatsApp provides no guarantee that group members
have a shared view of the group membership. The DOGM formalism, and our
security analysis, follows this approach by capturing messaging sessions at the
level of unidirectional channels. Each of the session unidirectional sessions may
have a different view of the group membership. Similarly, since it is not guar-
anteed that all sessions have the same view of a user’s device composition, the
formalism handles group membership at the device rather than user level.

• Init models the initialisation of a new DOGM session. That is, a series
of UNI sessions for a particular device, in a particular group, and in a
particular role (either as sender or recipient).
This differs from our description in Section 3, which described the be-
haviour of a WhatsApp client, managing any number of simultaneous
messaging sessions. Along these lines, we remove the use of a logical group
identifier gid from WA-DOGM altogether. Since any separation of state
between logical groups is handled by the DOGM challenger on behalf of
the protocol, the identifier no longer serves a functional purpose.

• Add and Remove model the addition or removal of a device from a session,
respectively. We do not expect WA-DOGM sessions to correctly track the
list of verified devices for a user when performing group management
functions, unlike WA.AddMember and WA.RemoveMember in Section 3.
Instead we offload this responsibility to the challenger in the DOGM
security experiment. Thus, these algorithms lean heavily on the SK and
UNI primitives.

• Encrypt and Decrypt model sending and receiving messages using an
outbound (or inbound) session (respectively).
Note that we require minor changes to the SK algorithms described in
Figure 13. We therefore replace the use of PAIR with WA-PAIR and UNI
with WA-RSS. For the latter change, since the WA-RSS formalism does not
capture the notion of stage or message index, we must lift the initialisation
and maintenance of the stage identifier, usid , and message index, z , to
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Init(ipkp, ipk , ρ
is
=snd, dskA,i, gid)

1 : skst ← SK.Init(snd, ipk , ∅)
2 : π ← Obj(gid : gid , A : ipkp, DA,i : ipk , ρ :snd, status :active,

3 : t : skst .t , z : skst .z , CU : [ipkp], CD : [(ipkp, ipk)],

4 : T :Map{ }, Γ :Map{ipkp :dskA,i.γ}, ipkp :dskA,i.ipkp,

5 : ipk :dskA,i.ipk , skst : skst , hist : [ ] )

6 : return dskA,i, π

Add(dskA,i, π
is
=Obj(ρ :snd), ipkp∗, ipkc∗, ∅)

1 : assert ipkc∗ ∈ {ipkp∗}
2 : ∨ ipkc∗ ∈WA-PO.Orbit(ipkp∗, π.Γ [ipkp∗], isk .PO[ipkp∗])

3 : skb∗c ← isk .SKB[ipkc∗]

4 : assert XEd.Verify(skb∗c .ipk , 0x05 ‖ skb∗c .spk , skb∗c .σspk )

5 : assert XEd.Verify(skb∗c .ipk , FICTION ‖ skb∗c .xpk , skb∗c .σxpk )

6 : π.skst ← SK.Add(π.skst , ipkc∗)

7 : π.CU ←app {ipkp∗}; π.CD ←app {(ipkp∗, ipkc∗)}
8 : π.t ← π.skst .t ; π.z ← π.skst .z

9 : return dskA,i, π, ⊥

Init(ipkp, ipk , ρ
is
=rcv, dskA,i, gid)

1 : π ← Obj(gid : gid , A : ipkp, DA,i : ipk , ρ :rcv, status :active,

2 : t :∅, z :∅, CU : [∅, ipkp], CD : [∅, (ipkp, ipk)],

3 : T :Map{ }, Γ :Map{ipkp :dskA,i.γ}, ipkp :dskA,i.ipkp,

4 : ipk :dskA,i.ipk , skst : skst , hist : [ ], usid :Map{ } )
5 : return dskA,i, π

Add(dskA,i, π
is
=Obj(ρ :rcv), ipkp∗, ipkc∗, ∅)

1 : assert π.CU [0] = π.CD[0] = ∅

2 : assert ipkc∗ ∈ {ipkp∗}
3 : ∨ ipkc∗ ∈WA-PO.Orbit(ipkp∗, π.Γ [ipkp∗], dskA,i.PO[ipkp∗])

4 : skb∗c ← dskA,i.SKB[ipkc∗]

5 : assert XEd.Verify(skb∗c .ipk , 0x05 ‖ skb∗c .spk , skb∗c .σspk )

6 : assert XEd.Verify(skb∗c .ipk , FICTION ‖ skb∗c .xpk , skb∗c .σxpk )

7 : π.skst ← SK.Init(rcv, ipkc∗, ∅)
8 : π.CU [0]← ipkp∗

9 : π.CD[0]← (ipkp∗, ipkc∗)

10 : return dskA,i, π, ∅

Remove(dskA,i, π
is
=Obj(ρ :snd), ipkp∗, ipkc∗, ∅)

1 : π.CD ←\ {(ipkp∗, ipkc∗)}
2 : if @ (ipkp∗, · ) ∈ π.CD :

3 : π.CU ←\ {ipkp∗}
4 : π.skst ← SK.Rem(π.skst , ipkc∗)

5 : π.t ← π.skst .t

6 : π.z ← π.skst .z

7 : return dskA,i, π, ∅

Encrypt(dskA,i, π
is
=Obj(ρ :snd), m)

1 : meta ← ICDC.Generate(

2 : π.ipkp, π.Γ , π.skst .mem, dskA,i.PO)
3 : π.skst , π.pst , (cP , cU )←$ SK.Enc(

4 : π.skst , π.pst , dskA,i.SKB,meta,m)

5 : π.t ← π.skst .t ; π.z ← π.skst .z

6 : π.T [π.t , π.z ]←app (cP , cU )

7 : π.hist ←app (π.ipkp, π.ipk , π.t , π.z ,m)

8 : return dskA,i, π, (cP , cU )

∗ProcessDL(dskA,i, π, orb∗)

1 : ipksX ← {ipkp∗} ∪WA-PO.Orbit(orb∗.ipkp, π.Γ [orb∗.ipkp], orb
∗)

2 : if ipksX 6= ⊥ :

3 : assert orb∗.ipkp = dskA,i.U[orb
∗.ipkp].ipkp

4 : π.PO[orb∗.ipkp]← orb∗

5 : π.Γ [orb∗.ipkp]← max(orb∗.γ, π.Γ [orb∗.ipkp])

6 : if π.ρ = snd :

7 : for (ipk∗
p, ipk

∗
c) ∈ π.CD

8 : st ipk∗
p = orb∗.ipkp ∧ ipkc∗ /∈ ipksX :

9 : dskA,i, π ← Remove(dskA,i, π, ipk
∗
p, ipk

∗
c)

10 : return dskA,i, π

Decrypt(dskA,i, π, C
is
=(cP , cU ))

1 : // Process protocol ciphertext (if it is a recipient session)

2 : assert π.ρ = rcv

3 : ipkp∗, ipkc∗ ← π.CD[0]

4 : skb∗ ← dskA,i.SKB[ipkc∗]

5 : assert XEd.Verify(ipkc∗, 0x05 ‖ skb∗.spk , skb∗.σspk )

6 : assert XEd.Verify(ipkc∗, FICTION ‖ skb∗.xpk , skb∗.σxpk )

7 : π.skst , dskA,i.pst ,meta,m← SK.Dec(

8 : π.skst , dskA,i.pst , skb∗, cP , cU )

9 : assert m 6= ⊥
10 : π.Γ ← ICDC.Process(π.ipkp, π.Γ , ipkp∗,meta, dskA,i.PO)
11 : assert ipkc∗ ∈ {ipkp∗}
12 : ∨ ipkc∗ ∈WA-PO.Orbit(ipkp∗, π.Γ [ipkp∗], dskA,i.PO[ipkp∗])

13 : t?, ust?in ← ∗SK.FindSession(π.skst .usts in , cU .usid)

14 : z? ← ust?in .z

15 : if t? > π.t : // record new stage

16 : π.t ← t?

17 : π.usid [t?]← ust?in .usid // assoc from stage to session

18 : if t? = π.t : // move message index forward

19 : π.z ← max[π.z , z?]

20 : π.T [t?, z?]← (cP , cU )

21 : π.hist ←app (ipkp∗, ipkc∗, t
?, z?,m)

22 : return dskA,i, π, m

Decrypt(dskA,i, π, cS )

1 : // Process server-provided updates to public state

2 : if cS ∧ cS .type = PO :

3 : dskA,i, π ← ∗ProcessDL(dskA,i, cS )

4 : if cS ∧ cS .type = SKB ∧ cS .ipk 6= dskA,i.ipk :

5 : dskA,i.SKB[cS .ipk ]← cS

6 : return dskA,i, π, ⊥

Fig. 25: Group messaging in WhatsApp expressed within the DOGM with revo-
cation formalism.
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StateShare(dskA,i, π, ipkp∗, ipkc∗, t, z, c
is
=∅)

1 : assert π.ipkp = π.ipk = ipkp∗ // Ensure this is primary device of requestee

2 : assert ipkc∗ ∈ {ipkp∗}
3 : ∨ ipkc∗ ∈WA-PO.Orbit(ipkp∗, π.Γ [ipkp∗], dskA,i.PO[ipkp∗])

4 : hist ′ ← [ (ipk ′
p, ipk

′
c, t

′, z ′,m′) ∈ π.hist : t ′ = t ∧ z ′ ≥ z ]

5 : dskA,i, pst , cP , chist , τhist ← HS.Share(primary, dskA,i.pst , dskA,i.SKB[ipkc∗], hist
′)

6 : return dskA,i, π, (cP , chist , τhist)

StateShare(dskA,i, π, ipkp∗, ipkc∗, t, z, c
is
=(cP , chist , τhist))

1 : assert π.ipkp = ipkp∗ = ipkc∗ // Ensure sharer is our primary device

2 : skb ← dskA,i.SKB[π.ipkp]

3 : assert XEd.Verify(π.ipkp, 0x05 ‖ skb.spk , skb.σspk ) // Check signed pre-key signatures

4 : assert XEd.Verify(π.ipkp, FICTION ‖ skb.xpk , skb.σxpk )

5 : dskA,i.pst , hist
′ ← HS.Receive(companion, dskA,i.pst , skb, cP , chist , τhist)

6 : if hist ′ = ⊥ :

7 : return dskA,i, π, ⊥
8 : π.hist ←app [ (ipk ′

p, ipk
′
c, t

′, z ′,m′) in hist ′ st (ipk ′
p, ipk

′
c) = π.CD[0] ∧ t ′ = t ∧ z ′ ≥ z ]

9 : return dskA,i, π, >

Fig. 26: State sharing in WhatsApp expressed within the DOGM with revocation
formalism.

the SK algorithms. We must, additionally, ensure that these values are
included as the additional data given to the WA-RSS.Signcrypt and WA-
RSS.Unsigncrypt algorithms.33

State sharing. We capture WhatsApp’s history sharing using the state share
functionality in the DOGM model.

• StateShare models the sharing of message history between the primary
device and new companion devices. Sharing and receiving message history
is captured at the level of unidirectional Sender Keys sessions. This differs
from WhatsApp’s implementation, where the primary device shares all of
its message history as a single bundle.

Using the state sharing functionality of the DOGM to capture history sharing
in WhatsApp entails a number of modelling decisions. In particular, the DOGM
enables the adversary to schedule and orchestrate state sharing sessions arbitrarily
(up to their computation limitations). This differs from practice, where history
sharing is only triggered in particular circumstances, but is necessary to capture
the required security of the ciphertexts. We utilise the stage and message index,
33 Specifically, we ask that the SK algorithms initialise usid and z as is done in line 1

of UNI.Init in Figure 12. We ask that the SK algorithms increment the message index
upon successful encryption and decryption. We replace line 8 from UNI.Enc and line
2 from UNI.Dec with the inclusion of (usid , z ) as the additional data in SK calls to
WA-RSS.Signcrypt and WA-RSS.Unsigncrypt.
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(t, z), inputs to the state sharing protocol to select all messages starting from
index z in the stage t for sharing. We use these inputs to allow accurate tracking
of history sharing in the security experiment. The recipient in a history sharing
session outputs a final ciphertext of the form > to indicate they have accepted
the share, and ⊥ to indicate that the share failed.

Remark 4. As discussed in Section 5, we remove the need to check the signed
pre-key signatures inside the PAIR-SEC experiment and lift this requirement to
the layer above: DOGM. Our description of WA-DOGM checks the signed pre-key
signature, σspk , when WhatsApp’s PAIR protocol would have done so. This can
be seen in lines 5 and 6 of the ciphertext decryption case of Decrypt in Figure 25
and lines 3 and 4 of the receiving case of StateShare in Figure 26.

7.5 Security Analysis of WhatsApp in the DOGM model

We now analyse the security of the WA-DOGM protocol within this new formalism.
In the simplest case, we expect the protocol to provide security as long as no
secrets have been compromised or corrupted. And, indeed, we will show that this
is the case. We now detail the situations in which WA-DOGM does not provide
confidentiality and authenticity, and use these to motivate the confidentiality
and authenticity security predicates (WA-DOGM.CONF and WA-DOGM.AUTH
respectively) that restrict patterns of adversarial queries within the DOGM
security experiment. These predicates capture a mixture of “trivial wins” in the
security experiment, as well as breaks (that may not have been intended) in the
design of the protocol. 34

Authentication We first consider the case of an authentication break, whereby
session πs

A,i accepts what it believes to be message z of stage t from sending
session πr

B,j .
The payload ciphertext of the Sender Keys session is authenticated via the

WA-RSS ratcheted symmetric signcryption scheme RSS. Thus, we would expect
authentication to hold within a single WA-RSS session unless the adversary has
compromised the state of the matching sending session, πr

B,j , at a point in time
where it holds the sending counterpart to the recipients WA-RSS session. Doing
so would expose the signing key which the adversary may then use to trivially
forge a ciphertext.

Note that, since the pairwise channels cannot guarantee a consistent message
order, there is similarly no guarantee that the stage indices used by πA,i

s and
πB,j
r are consistent. Thus, we utilise the identifier for the WA-RSS session to

determine partnering35 and disallow authentication breaks where the partnered
sending session was compromised. Putting this all together, when a recipient
34 WhatsApp’s whitepaper does not provide enough detail in its threat model [66,

Defining End-to-End Encryption] to determine which cases should be categorised as
expected or unexpected breaks.

35 Recalling our description in the previous sections, we see that this mirrors the
implementation. Note that the presence of collisions in WA-RSS identifiers does not
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session, πA,i
s , accepts a message as originating from πB,j

r , we check whether the
compromise oracle, Compromise, was issued for the sending session at the point
in time when it contained the partnered WA-RSS sending session.

As mentioned above, the WA-RSS public key that verifies the payload cipher-
text is distributed to πs

A,i via the WA-PAIR scheme for pairwise channels. Thus, it
relies on the authentication provided by those pairwise channels. The public key
bundle used to establish the pairwise channel between devices (A, i) and (B, j)
is authenticated by their companion public key ipk c. Since WhatsApp allows
for multiple parallel pairwise sessions, any adversary that corrupts the secret
authenticator of device (B, j) can create, authenticate and distribute their own
WA-RSS public key and proceed to forge payload ciphertexts. We disallow this
attack by ensuring that the claimed sending device, (B, j), has not previously
been corrupted. As we saw in our security analysis of the pairwise channels
in Section 5, there exist (weaker) attacks when the pairwise session state of
the recipient device has been compromised. Namely, thanks to the symmetric
authentication within established pairwise channels, the compromise of one of the
recipient device’s session states enables the adversary to impersonate the sending
party, forging a Sender Key distribution ciphertext that will be accepted by the
recipient. We make the simplifying choice to capture an overly broad predicate,
in this case, and disallow authentication breaks when the recipient device, (A, i),
has previously been corrupted.

Each of the device public keys ipk c are themselves authenticated by the
primary device (as we capture with the public key orbit provided by the WA-PO
scheme). Note that, in WhatsApp, corrupting a user’s primary device provides the
adversary with the same information as corrupting the user’s long-term secrets.
We must, therefore, also check if the adversary has corrupted the primary device
through a CorruptDevice call, and disallow both attacks.36

Finally, it is possible for the adversary to break authentication through state
sharing. In WhatsApp, such breaks are captured when the adversary successfully
forges a state sharing message over a pairwise channel. Since WhatsApp clients
will only accept history sharing messages from their primary device, and over a
pairwise channel, the only time we expect the adversary to be able to win the
game by forging a history sharing message is if they have directly compromised
the recipient device’s long-term user identity (or, equivalently, their primary
device).

We codify these requirements through the following authentication predicate.

gain the adversary an advantage, since such collisions only have the potential to add
false positives to the predicate, thereby increasing its coverage. Additionally, these
identifiers are not relied upon for authentication.

36 We contrast this with prior analysis of Matrix [3] where the modelling choice was
made to separate the user’s long-term secrets from the device state, despite both being
distributed across all of a user’s devices. Such a choice was not possible in the case
of WhatsApp, since the same key material is required for both user- and device-level
operations. WhatsApp achieves stronger security guarantees in this instance, despite
the security results suggesting otherwise.
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Definition 32. An instance of the DOGM with revocation security experiment
fulfils the WA-DOGM.AUTH authenticity predicate if, processing a Decrypt(A, i, s, c)
query in order to decrypt a message for the session πA,i

s with sender (B, j) and
ciphertext c at computed stage t and message index z, none of the following
conditions are true (at the point in time the forgery is detected).

1) The recipient user’s secrets have been compromised, i.e. either CorruptUser(A)
or CorruptDevice(A, 0) was issued at any point before the authentication
break.

2) The sending user’s secrets have been compromised, i.e. either CorruptUser(B)
or CorruptDevice(B, 0) was issued before the recipient received the inbound
Sender Keys session for that stage.

3) Either the sending or recipient device secrets have been compromised,
i.e. either CorruptDevice(B, j) or CorruptDevice(A, i) was issued before the
recipient received the inbound Sender Keys session for that stage.37

4) The session state of the sender was compromised at a point in time when
the sending session πB,j

r was in the partnered Sender Keys stage for the
received ciphertext, i.e. Compromise(B, j, r) was previously issued at stage
πB,j
r .t = t′ such that πA,i

s .usid [t] = πB,j
r .usid [t′].

Confidentiality We now consider confidentiality. Recall that the adversary may
win the security experiment by correctly guessing the challenge bit, and that this
challenge bit is explicitly used by the challenger in only one place during the
adversary’s execution: when encrypting challenge ciphertexts. It is, additionally,
used implicitly when sharing history containing a challenge ciphertext.

If the adversary can forge messages for pairwise channels, they can convince
honest parties to send them the requisite inbound Sender Keys session state.
It follows that those conditions in the authentication predicate that capture
impersonation at the level of pairwise channels will also apply to the confiden-
tiality predicate. There are some key differences between the authentication and
confidentiality cases, however. First, while only outbound Sender Keys sessions
contain the key material necessary to forge messages, all Sender Keys sessions
contain the key material necessary to decrypt messages. It follows that we must
broaden the predicate to capture the intended recipients of a message. Second,
confidentiality breaks can be retroactive, i.e. the adversary can break confidential-
ity through state compromises that occur after the message has been processed
by intended recipients.

This is thanks to the history sharing sub-protocol. In particular, it is possible
for a recipient session, having received a challenge encryption, to later share

37 If the receiving device is aware that the sending device has been revoked, we would
expect it to reject the message. We do not include this in the security predicate
because it is enforced by the challenger, which will only trigger an authentication
break when the recipient is aware of such a revocation.
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the resulting plaintext with another device.38 If the recipient of a state share
has had their secret device authenticator compromised, then the adversary
can impersonate it at the level of pairwise channels, decrypt the state sharing
ciphertext and, in turn, determine whether m0 or m1 was chosen by the challenger.
Thus, we have the confidentiality predicate disallow the corruption of the intended
recipient devices at any point in the experiment.39

Further still, since the device composition of a user can change after the
distribution of a challenge ciphertext, it is possible that the state sharing protocol
can be used to distribute (re-encrypted) challenges from an intended recipient
device to another device of the same user. Luckily WhatsApp restricts history
sharing to occurring from the primary device to a companion device, minimising
the impact of such attacks. Nonetheless, the sending session is not necessarily
aware of all the possible recipient devices for its message: such a device would not
be considered an intended recipient of the session and, thus, is not covered by the
aforementioned checks. There are two approaches we could take. We could either
(a) allow the corruption of a recipient user’s secrets after initial distribution,
providing that no such state sharing events have occurred, or (b) we can simply
disallow the corruption of a recipient user’s secrets at any point in the experiment.
We take the second approach.

We now codify these requirements through the confidentiality predicate.

Definition 33. An instance of the DOGM with revocation security experiment
fulfils the WA-DOGM.CONF confidentiality predicate if, for every challenge cipher-
text in the security experiment, c ∈ C, corresponding to an Encrypt(A, i, s,m0,m1)
query for the session πA,i

s , with intended recipients CU := πA,i
s .CU and CD :=

πA,i
s .CD at stage t? := πA,i

s .t and message index z? := πA,i
s .z, none of the

following conditions are true.

1) The sending user has been compromised, i.e. a query to CorruptUser(A) or
CorruptDevice(A, 0) was issued, at any point in the experiment.

2) The sending device has been compromised, i.e. a query to CorruptDevice(
A, i) was issued, before the inbound Sender Keys session for this stage
was distributed.40

3) A recipient user has been compromised, i.e. a query to CorruptUser(B) or
CorruptDevice(B, 0) was issued for a user B ∈ CU , at any point in the
experiment.

38 This is, in essence, similar to an adversary making two identical calls to different
encryption oracles in a security experiment, for which the first oracle triggers encryp-
tion using the outbound Sender Keys session and the second triggers encryption with
the attachment encryption scheme.

39 A more accurate approach would be to track when such state sharing events have
actually occurred.

40 Note that device revocation of the sending device is no help here. It requires the
sending session to have knowledge that its own device has been revoked.
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4) Any device representing a recipient user has been compromised, i.e. a
query to CorruptDevice(B, j) was issued for a user B ∈ CU and any
device j ∈ [nd] at any point in the experiment.

5) The sending session has been compromised, i.e. a query to Compromise(
A, i, s) was issued, within the same stage t? and before the session has
ratcheted forward past the challenge message index z?.

6) A recipient session has been compromised, i.e. a query to Compromise(
B, j, r) was issued for a session πB,j

r representing a device (B, j) in the
challenge recipient list CD at a stage πB,j

r .t = t′ that is partnered to the
challenge stage and it has not ratcheted forward past the challenge message
index z?: πA,i

s .usid [t?] = πB,j
r .usid [t′] ∧ z′ < z?.

We now prove that our instantiation of multi-device group messaging in
WhatsApp within the DOGM with revocation formalism, the WA-DOGM protocol,
achieves security under these predicates.

Theorem 5 (IND-CCA security of WA-DOGM). The WA-DOGM protocol spec-
ified in Definition 31 is a secure DOGM with revocation protocol with re-
spect to authentication predicate WA-DOGM.AUTH and confidentiality predicate
WA-DOGM.CONF, given that state compromise does not reveal message history
stored in ‘π.hist ’.

That is, for any probabilistic polynomial-time algorithm A playing the DOGM
with revocation security experiment instantiated with WA-DOGM we have that
AdvIND-CCA

WA-DOGM(Λ) can be bound by:

AdvIND-CCA
WA-DOGM(np, nd, ni, ns, nm)

≤
[

// Case 1: Authentication

np · AdvwPO
WA-PO(λ, nd − 1, 2 · nd, 2 · nd − 1) +

np · nd · AdvSUF-CMA
XEd (λ, 2) +

AdvPAIR-SECWA-PAIR (λ, np · nd, 2 · ne , np · nq) +

np · nd · ni · ns · AdvSUF-CMA
WA-RSS (λ, nm) +

np · (nd − 1) ·
[

AdvPAIR-SECWA-PAIR (λ, np · nd, 2 · ne , np · nq) +

2 · ne · np · nq ·
(
AdvPRFHKDF(λ, 1) + AdvEUF-CMA

HMAC (λ, 1)
)]]

+
[

// Case 2: Confidentiality

np · AdvwPO
WA-PO(λ, nd − 1, 2 · nd, 2 · nd − 1) +

np · nd · AdvSUF-CMA
XEd (λ, 2) +

AdvPAIR-SECWA-PAIR (λ, np · nd, 2 · ne , np · nq) +
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(np · nd · ni · ns · nm) · (np · nd · ni · ns) ·
[

AdvPAIR-SECWA-PAIR (λ, np · nd, 2 · ne , np · nq) +

AdvPFS-OAE
WA-RSS (λ, nm) +

np · (nd − 1) · 2 · ne · np · nq ·
(
AdvPRFHKDF(λ, 1) + AdvIND-CPA

AES-CBC(λ, 1)
)]]

This bound is negligible in the security parameter, under the usage parameters
Λ = (np, nd, ni, ns, nm), in the following conditions.

1) WA-PO is a weakly secure public key orbit (as specified by Definition 19)
with advantage AdvwPO

WA-PO(λ, nch, nσ, ng). In Theorem 1, we derive an
advantage term and prove it to be negligible in the security parameter λ
for any PPT adversary, under certain assumptions.

2) WA-PAIR provides secure pairwise channels (as specified by Definition 23)
with advantage AdvPAIR-SECWA-PAIR (λ, nd, ni, nm). In Theorem 2, we derive an
advantage term and prove it to be negligible in λ for any PPT adversary,
under certain assumptions.

3) UNI instantiates a PFS-OAE and SUF-CMA secure ratcheted symmetric
signcryption scheme (as specified by Definitions 28 and 29) with advantages
AdvPFS-OAE

WA-RSS (λ, nm) and AdvSUF-CMA
WA-RSS (λ, nm) (respectively). In Theorems 3

and 4, we derive advantage terms and prove these to be negligible for any
PPT adversary under certain assumptions.

4) AES-CBC instantiates an IND-CPA secure symmetric encryption scheme
(as specified by Definition 9) with advantage AdvIND-CPA

AES-CBC(λ, nch), which we
assume to be negligible in the security parameter λ for any PPT adversary.

5) HKDF instantiates a secure PRF (as specified by Definition 6) with ad-
vantage AdvPRFHKDF(λ, nq), which we assume to be negligible in the security
parameter λ for any PPT adversary.

6) HMAC instantiates an EUF-CMA secure MAC (as specified by Defini-
tion 3) with advantage AdvEUF-CMA

HMAC (λ, nq), which we assume to be negligible
in the security parameter λ for any PPT adversary.

7) XEd instantiates a SUF-CMA secure digital signature scheme (as specified
by Definition 15) with advantage AdvSUF-CMA

XEd (λ, nq), which we assume to
be negligible in the security parameter λ for any PPT adversary.

Note that WhatsApp (as deployed) is instantiated with the security parameter
λ = 256.

Proof outline We separate the proof into two cases. In Case 1, we consider the
event where the adversary wins the game by causing the win flag to be set, i.e.
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by breaking revocation or authentication. In Case 2, we consider the event where
the adversary wins by guessing the challenge bit b. We bound the advantage of
the adversary in both cases and demonstrate that under certain assumptions,
A’s advantage in winning overall is negligible.

In Case 1 we begin by preventing the adversary from generating a public key
orbit, orb, that verifies for any uncorrupted user’s primary key ipkp, or causing
a user to output an orb containing companion public key ipk c that it does not
own. We demonstrate that doing either implies breaking the wPO security of the
PO scheme. Note that, as a result of these changes, the adversary is no longer
able to trigger a revocation win. Next, we prevent the adversary from forging
signatures from a device’s identity key, be that a primary or companion device.
Doing so prevents the usage of forged key bundles for the WA-PAIR scheme. We
then use the PAIR-SEC security of the WA-PAIR scheme to prevent the adversary
from forging pairwise ciphertexts, and thus from injecting their own Sender Keys
session with a public key under their control (for use in the WA-RSS scheme), or a
state sharing ciphertext (to allow injecting messages through the history sharing
scheme). We additionally demonstrate that the WA-PAIR leaks no information
about the contents of its messages. We proceed to demonstrate that forging any
WA-RSS message implies breaking the EUF-CMA security of the WA-RSS scheme.
To prevent the adversary from forging HS ciphertexts, we replace the computation
of the MAC key ahk used in the HS scheme with a uniformly random value, and
finally show that any adversary capable of forging a HS ciphertext can be used
to break the EUF-CMA security of the underlying MAC scheme.

In Case 2 we reduce (by hybrid argument) the number of encryption challenge
queries to a single query, and guess the “encryption challenge” session. We prevent
the adversary from forging messages to this session through a WA-PAIR channel
by the same arguments as in Case 1. Thanks to the confidentiality provided by
the PAIR-SEC security of the WA-PAIR scheme, we replace the WA-RSS state
sent by the challenge session, πA,i

s , to its communicating partners in the guessed
stage with random replacements. We do the same for any secret seed used to
re-encrypt the challenge plaintext in a history sharing ciphertext. We proceed to
replace the challenge plaintext mb for the challenge WA-RSS and HS ciphertexts,
arguing that the change is indistinguishable by the security of the respective
underlying encryption scheme. In particular, we finish by demonstrating that
any adversary that can win the game with non-negligible probability can be used
to break the PFS-OAE security of the WA-RSS scheme.

Proof. We separate the proof into two cases. In Case 1, we consider the probability
of the adversary winning the game through a revocation or authentication break.
In Case 2, we consider the probability of the adversary winning the game by
correctly guessing the challenge bit through a confidentiality break. We bound the
advantage of winning both cases and demonstrate that under certain assumptions,
the adversary’s advantage of winning overall is negligible.

Let AdvAUTH denote the advantage of the adversary winning the security
game by triggering the win flag to be set to true, and let AdvCONF denote the
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advantage of the adversary winning the security game when it concludes with
the adversary returning the guess of the challenge bit b′.

Since AdvIND-CCA
WA-DOGM(Λ) ≤ AdvAUTH + AdvCONF we may bound the overall

advantage of winning by considering each case in isolation.

Case 1: Adversary has triggered either the authentication or revocation
win condition We bound the advantage of A in triggering the win flag to be
set to true via the following sequence of games.

Game 0. This is the standard DOGM game in Case 1, instantiated with the
WA-DOGM protocol. Thus we have AdvAUTH = AdvG0.

Game 1. We introduce a series of abort events, abortAwPO, for each user A ∈ [np].
The event is triggered if any session, say πB,j

r , has WA-PO.Orbit calculate an
orbit P for the user A (which may be itself) at generation πB,j

r .Γ [A], neither
user A nor device (A, 0) have been corrupted at the time the orbit is calculated,
and at least one of the following is true.

1) There exists an identity key ipk c within P that was not added to A in the
processing of an honest Create query. Specifically, if there exists ipk c ∈ P
for which no query of the form Create(A, i) 7→ dpkA,i has been issued for
some i ∈ [nd] such that dpkA,i.ipk = ipk c.

2) There exists an identity key ipk c within P that has been revoked by A in
the processing of an honest Revoke query and the verifying session is aware
of a sufficiently recent orbit generation. Specifically, if there exists ipk c ∈ P
for which a query of the form Revoke(A, i) 7→ dpkA,i has been issued for
some i ∈ [nd] such that dpkA,i.ipk = ipk c and πB,j

r .Γ [A] ≥ dpkA,i.γ.
We bound the probability of each event occurring iteratively, for each user in
turn, by a hybrid argument.

Consider the following security reduction, B, which we construct against the
weak public-key orbit security of the WA-PO scheme. Let CwPO denote the chal-
lenger. We replace the primary key of user A with the primary key, pkp, provided
by the challenger at the initialisation of our reduction. We proceed to emulate
Game 0 to our inner adversary with the following changes. Whenever each party
needs to update orbA, rather than computing it themselves, our reduction passes
the appropriate query to the challenger, CwPO: querying PO.Attract when adding
companion keys, PO.Repel when removing companion keys, and PO.Refresh to
refresh the state, orbA. Further still, whenever a device’s identity key is required
to sign its key exchange counterpart or the medium-term pre-key, our reduction
issues a query to the limited signing oracle exposed by CwPO, Sign.

Whenever the adversary issues a CorruptUser(A) or CorruptDevice(A, 0) query,
we utilise the CwPO challenger’s Compromise query to reveal the secret key to the
adversary. We do the same for the corruption of companion devices, making use
of the CwPO challenger’s Eject query. The reduction tracks the expected values of
the “to” and “from” sets of the wPO security experiment, T and F , upon each
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change that is made through the aforementioned queries. They do so for user A
at each generation of their orbit state.

If at any point, any session πB,j
r has WA-PO.Orbit calculate an orbit P∗ for

user A at generation γ∗ and either ‘P∗ \ T ′ 6=? ∅’ or ‘P∗ ∩ C \ F 6=? ∅’ evaluates
to true for the values of T ′ and F at generation γ∗, and neither CorruptUser(A)
nor CorruptDevice(A, 0) has been queried, then the orbit state and generation
can be submitted to the challenger CwPO to win the experiment.

Applying the reduction above for each of the np users in the experiment and,
in turn, each respective abort event, we therefore find:41

AdvG0 ≤ AdvG1 + np · AdvwPO
WA-PO(λ, nd − 1, 2 · nd, 2 · nd − 1)

From this game onwards, it is not possible for the adversary to cause the win
flag to be set to true by breaking revocation.
Game 2. We define a set of events, {eventA,i

ipk : ∀ A ∈ [np], i ∈ [nd]}, one
for every possible device in the experiment. For the device (A, i) with identity
keys (isk , ipk), we introduce a set ΣA,i in which the challenger records every
honest message-signature pair, (m,σ), produced through a call to XEd.Sign(

isk ,m) whilst processing a query. The eventA,i
ipk event is triggered if, at any point

in the experiment, a session has a call to XEd.Verify(ipk ,m′, σ′) evaluate to true
but the pair (m′, σ′) is not present in the set ΣA,i and the device (A, i) has
not been corrupted at this point in the experiment (either through a call to
CorruptDevice(A, i) or CorruptUser(A) when i = 0).

We then introduce an abort event, abortipk , that is triggered if one or more
of the aforementioned events occurs, and look to bound the probability of the
abortipk abort event occurring. We do so through a sequence of D := np · nd

hybrids: Game 1.0, Game 1.1, . . . , Game 1.D. In the h-th hybrid, we track
the signatures of the first h devices that are created in the experiment, and trigger
the abort event as soon as a forgery is detected for an uncorrupted device (as
described above). It follows that Game 1.0 is exactly Game 1 and Game 1.D
is exactly Game 2. We now consider the change in advantage between two
consecutive hybrids, Game 1.h and Game 1.(h+1).

We construct an adversary B against a SUF-CMA challenger for the XEd
signature scheme, which we denote CDS. Our adversary proceeds to emulate the
security experiment to our inner adversary, A, with the following changes. Let
(A, i) be the (h + 1)-th device created in the security experiment. We replace
the generation of (isk , ipk) for this device with the challenge key pk provided by
the CSUF-CMA challenger. Whenever B requires a signature under isk , rather than
41 We determine the parameterisation of each wPO experiment as follows. First, the

number of challenges in the public key orbit experiment maps to the number of
companion devices. Second, each primary or companion device’s identity key makes
use of the signing oracle twice in order to sign the medium-term pre-key and the
(fictional) replacement of the identity key for key exchange. Third, the number of
generations for each user is naturally limited to registering and revoking each possible
companion device once (plus the initial generation consisting solely of the primary
device).
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computing the signature σ itself, B instead queries CSUF-CMA with the message m.
If any session receives a signature σ′ that verifies correctly under pk but was not
honestly generated by the device (A, i), then this means that the adversary has
created a signature σ′ that was not output by CSUF-CMA, but verifies correctly. In
other words, they have created a forgery. Note that the abort event will not be
trigger if the adversary has corrupted the device (via a call to CorruptDevice(
A, i) or CorruptUser(A) when i = 0), such that this reduction does not need to
consider cases where the secret signing key is revealed to the adversary.

Applying this reduction to each hybrid in turn, we find that:

AdvG1 ≤ AdvG2 + np · nd · AdvSUF-CMA
XEd (λ, 2)

Game 3. In this game, we abort if any fresh42 session, πA,i
s , accepts a pairwise

ciphertext from a device, (B, j), but the message was not the honest output of
that device.

To do so, we introduce a reduction B against a challenger for the PAIR-SEC
security of the WA-PAIR scheme. Denote this challenger by CPAIR. Our reduction
emulates Game 2 to the inner adversary, A, with the following changes. Our
reduction proceeds to replace the pairwise channel keys for each device with a set
output by the CPAIR challenge. Our adversary, B, maintains a mapping between
the device indices of the PAIR-SEC experiment and those of our emulated DOGM
experiment.

Whenever a session πA,i
s initialises a new pairwise channel with a session

πB,j
r , the reduction instead simply queries Encrypt(i, j, sid,m,m) to CPAIR, where

m is the message that would have been encrypted honestly. We maintain a
record of the sessions that have been initiated between any two devices and the
session identifiers they use. The output ciphertext c replaces the generation of
the ciphertext by B. Note that since we submit the same message as m0 and m1,
then this is no different to B generating the ciphertext honestly.

Whenever the inner adversary, A, calls CorruptDevice(B′, j′) for some device
(B′, j′), our reduction uses its device identifier mapping to submit the appropriate
CorruptIdentity, CorruptShared or CorruptSession queries to CPAIR, making sure to
query CorruptSession for all of that device’s sessions. Similarly, whenever the inner
adversary calls CorruptUser(B′) for some user B′, our reduction uses its device
identifier mapping to submit the appropriate CorruptIdentity query to CPAIR. Note
that the authentication predicate implies the WA-PAIR authentication predicate,
which means that if πA,i

s is fresh at the time the forgery is accepted, then so too
is any pairwise channel used by πA,i

s . Thus, whenever the abort event triggers,
the resulting message is a valid forgery against the CPAIR challenger. We take the
forged pairwise message m′ accepted by πA,i

s and submit it to CPAIR by issuing
the appropriate decryption query, resulting in CPAIR setting the win flag to true.
42 We consider a session, πA,i

s , fresh for the message at stage t and message index z if the
authentication predicate is satisfied, i.e. WA-DOGM.AUTH(A, i, s, t, z, B, j) 7→ true
where (B, j) := πA,i

s .CD[0] and B := πA,i
s .CU [0]. A session can be fresh for any

message if the authentication predicate is satisfied no matter the values of (t, z).
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It follows that anytime the inner adversary triggers the abort event, then
it can be turned into an authentication break against the PAIR-SEC security of
WA-PAIR and thus:

AdvG2 ≤ AdvG3 + AdvPAIR-SECWA-PAIR (λ, np · nd, 2 · ne , np · nq)

In the bound above, we introduce three ad-hoc parameters, ne , np and nq,
representing limits on the number of ephemeral key pairs a single device may
generate, epochs within a single Signal two-party channel and messages within
each epoch (respectively). We use the former, ne , to bound the number of two-
party Signal channels that may be initialized between any pair of devices. The
product of the latter two, np ·nq, bounds the total number of messages exchanged
within a single Signal two-party channel.

Note that, since we parameterise the DOGM security experiments primarily
with respect to concepts most relevant to the application – i.e. through the number
users, devices, Sender Key sessions, stages within those sessions and messages
within those stages – the maximum number of messages sent over the underlying
pairwise channels is somewhat unrelated to the experiment parameterisation.
Thus, we introduce ad-hoc parameters that limit the usage of the underlying
pairwise channels.43

Game 4. In this game, we abort if any fresh session, πA,i
s , accepts an inbound

WA-RSS session, str, sent under a pairwise channel from the designated sending
device, πA,i

s .CD[0], but str was not honestly output by that device. This is a
purely syntactic change that follows directly from Game 3. Thus:

AdvG3 = AdvG4

Game 5. Let πA,i
s be the first fresh session that causes win to be set to true upon

acceptance of either (a) a ciphertext c from some inbound WA-RSS state str,
or (b) a history sharing ciphertext (cP , chist , τhist). In this game, we introduce
an abort event, abortuni-forge, that is triggered if πA,i

s sets win to true upon
acceptance of a WA-RSS message from the claimed sending session, πB,j

r for some
r, but the message was not the honest output of device (B, j). In other words,
we abort if case (a) is realised. Thus:

AdvG4 = AdvG5 + Pr[abortuni-forge]

We bound the probability of abortuni-forge occurring with Game 5.1 and
Game 5.2.
43 We could, alternatively, look to limit these by the sum of the maximum number of

Sender Key distribution messages and history sharing messages. However, such a
bound would ignore that, in practice, these two sets of parameters are unrelated.
This is especially true in the case of WhatsApp where, in practice, the underlying
pairwise channels are used for direct messaging in addition to their use as signalling
infrastructure for group messaging.
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Game 5.1. In this game, we guess the sending session, πB,j
r , that generated the

inbound WA-RSS session state. We additionally guess the stage, t′, of the sending
session when the relevant inbound WA-RSS state was distributed. We trigger an
abort event if any of these guesses are incorrect. Note that, by Game 4, we can be
sure that such session state was generated by an honest session representing the
device (B, j) = πA,i

s .CD [0] and that the inbound session state, str, was received
by πA,i

s unmodified.
Specifically, at the beginning of the experiment we guess a tuple of values

(B, j, r, t′) and abort the game if πA,i
s uses some session, st†r 6= str, to decrypt c.

Thus, we find:

Pr[abortuni-forge] ≤ np · nd · ni · ns · AdvG5.1

Game 5.2. In this game, we abort if πA,i
s sets win to true upon acceptance of a

WA-RSS message from the sending session guessed in the previous game, πB,j
r ,

but the message was not the honest output of device (B, j).
We introduce the following reduction, B. When the sending session πB,j

r

generates a new WA-RSS state for the stage t′, B instead initialises a strong un-
forgeability challenger for the RSS scheme, which we denote CSUF-CMA. Whenever
πB,j
r sends a message to the group in this stage, our reduction instead issues a call

to the Send(m) oracle, with the given message m, and distributes the resulting
ciphertext c. The output ciphertext c replaces the generation of the ciphertext by
B. Similarly, whenever a fresh session πA,i

s wishes to decrypt, B simply queries
Receive(c), with the given ciphertext c, to CSUF-CMA. Note that, since we abort
only when a fresh session πA,i

s accepts a malicious WA-RSS message, we do not
need to handle the adversary’s Compromise queries for this particular WA-RSS
state. It follows that, whenever the abort event triggers, we have submitted a
forged WA-RSS ciphertext c to the CSUF-CMA challenger when submitting the
decryption query, Receive(c), on behalf of the πA,i

s recipient session.
Thus, any adversary that triggers this abort event, can be turned into a

successful adversary against the SUF-CMA security of WA-RSS:

AdvG5.1 ≤ AdvSUF-CMA
WA-RSS (λ, nm)

We note here that the adversary can no longer win by causing a device to
decrypt forged WA-RSS ciphertexts.

We now turn to considering the authenticity of history sharing, and can be
sure that we are in case (b) whereby the first fresh session that causes win to be
set to true does so upon acceptance of a history sharing ciphertext (cP , chist , τhist).
We will rely on the confidentiality of the random seed in the history sharing
attachment pointer to ensure the authenticity of the attachment and, thus,
ciphertext.44

44 An alternative approach could be to utilise the already determined authentication
of the pairwise channel ciphertexts alongside the hash h := SHA256(c′ ‖ τ) included
within them.
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Game 6. In this game, we introduce an abort event that is triggered if πA,i
s

has DM.Dec successfully return an attachment pointer, mptr , decrypted from
the ciphertext cP whilst processing a state sharing query for its stage t but the
attachment pointer was not honestly generated by one of device (A, 0)’s sessions.
Since πA,i

s is fresh, inspecting the implementation of StateShare demonstrates
that this is purely a syntactic change that follows directly from Game 3. Thus:

AdvG5 = AdvG6

Game 7. In this game, we guess at the beginning of the experiment the user A
and device i whose session, πA,i

s , causes win to be set. We make this choice from
up to np users and up to nd − 1 of their companion devices. Thus:

AdvG6 ≤ np · (nd − 1) · AdvG7

Game 8. In this game, we simulate the use of pairwise channels to distribute all
history sharing attachment pointers from sessions of device (A, 0) to sessions of
device (A, i). Namely, we replace the plaintext of the relevant message, m, with a
random bit-string of the same length, m̃, and store this in the challenger’s state.
Whenever a session attempts to decrypt this pairwise ciphertext, we replace its
output with our stored value.

Consider the following reduction, B, which we construct against a challenger
for the PAIR-SEC security of the WA-PAIR scheme. Denote this challenger by
CPAIR. Our reduction proceeds to emulate the security experiment to the inner
adversary similarly to our reduction in Game 3, with a few changes. As before, it
replaces the pairwise channel keys for every device in the experiment with those
output by the CPAIR challenge. Our adversary, B, maintains a mapping between
the device indices of the PAIR-SEC experiment and those of our emulated DOGM
experiment. Whenever a session needs to encrypt a message, m, over a pairwise
channel, our reduction proceeds to forward the encryption request on as normal,
with the following exception. If the plaintext is a history sharing attachment
pointer for a message from device (A, 0) to device (A, i), our reduction generates
a random replacement for the plaintext, m̃, and submits an encryption challenge
to the CPAIR challenger with (m0,m1), where m0 is the original message m and
m1 is its random replacement m̃. Observe that the authentication predicate for
WA-DOGM implies the confidentiality predicate for WA-PAIR in this case, such
that our adversary may not corrupt either of these devices.

When the bit b sampled by CPAIR is 0, then the output ciphertext encrypts
m honestly and we are in Game 7. However, if the bit b sampled by CPAIR is 1,
then the output ciphertext encrypts m̃ instead and we are in Game 8. Thus,
any adversary that can distinguish our change can be turned into a successful
adversary against the PAIR-SEC security of WA-PAIR and we find:

AdvG7 ≤ AdvG8 + AdvPAIR-SECWA-PAIR (λ, np · nd, 2 · ne , np · nq)

Game 9. In this game we guess at the beginning of the experiment which history
sharing ciphertext (cP , chist , τhist) it is whose processing causes win to be set,
and abort if this guess is incorrect.
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Observe that the number of history sharing ciphertexts that a single device
may receive is limited by the number of pairwise messages they are able to
exchange with their primary device. We make this guess from a pool of up to
H := 2 · ne · np · nq pairwise messages that may be exchanged between the two
devices. We implement our guess by picking an index between 0 and H − 1
(inclusive) uniformly at random and counting the relevant history sharing queries.
Our guess is the h-th such query, and we abort if our guess is incorrect. Thus:

AdvG8 ≤ 2 · ne · np · nq · AdvG9

Game 10. In this game, we replace the key k that is used to encrypt and authen-
ticate the guessed history sharing attachment sent by (A, 0) with a uniformly
random and independent value.

Specifically, we introduce a reduction B that interacts with a PRF challenger
CPRF of key length 256 and output length 896: for the h-th StateShare query to
(A, 0), instead of computing k honestly B instead queries the CPRF challenger’s
PRF query with t and replaces k with the output, which we denote k′.

By Game 8, the seed r used to compute k is a uniformly random value and
independent of the protocol execution. Thus, when the bit b sampled by CPRF is
1, then the output key k′ is identically distributed to k and we are in Game 9.
However, if the bit b sampled by CPRF is 0, then k′ ←$ {0, 1}896 instead and we
are in Game 10.

Any adversary that can distinguish our change can be turned into a successful
adversary against the PRF security of HKDF, and thus:

AdvG9 ≤ AdvG10 + AdvPRFHKDF(λ, 1)

Game 11. In this game, we introduce an abort event that triggers if the adversary
forges our guessed history-sharing ciphertext to πs

A,i.
Specifically, we introduce a reduction B that interacts with an EUF-CMA

challenger CEUF-CMA: whenever B needs to generate a MAC tag using ahk (trun-
cated from k′), instead of computing the MAC tag honestly B instead queries
CEUF-CMA with the ciphertext message c. Since ahk is already uniformly random
and independent of the protocol flow, this change is sound. If the adversary trig-
gers the abort event, then the adversary must have computed a fresh ciphertext
c and MAC tag τ ′, breaking EUF-CMA security. B returns the history-sharing
ciphertext c′ and the MAC tag τ ′ to CEUF-CMA and aborts. Thus, any adversary
that can trigger our abort event can be turned into a successful adversary against
the EUF-CMA security of HMAC and thus:

AdvG10 ≤ AdvG11 + AdvEUF-CMA
HMAC (λ, 1)

We note here that the adversary can no longer win by causing a device to
decrypt forged HS ciphertexts.

However, we must ensure that the primary device has not shared any already
forged messages. In particular, we must show that, since πA,i

s is fresh at stage t and
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message index z, every partnered session belonging to its primary device, (A, 0),
is also fresh. Specifically, we must show that WA-DOGM.AUTH(A, 0, p, t?, z, B, j)
= true for all p ∈ [ni] for which there exists a t? such that πp

A,0.usid[t
?] =

πs
A,i.usid[t]. Recalling the authentication predicate, we see that WA-DOGM.AUTH(

A, i, s, t, z, γ, B, j) = true implies that WA-DOGM.AUTH(A, 0, p, t?, z, B, j) =
true for all partnered sessions belonging to device (A, 0). Thanks to the changes
in Game 5, we can be sure that the message shared by the primary device is
itself genuine.

Thus, we find AdvG11 = 0
This completes our analysis of Case 1.

Case 2: Adversary terminates and outputs a bit b We bound the probability
of the adversary, A, correctly guessing the challenge bit b via the following
sequence of games.
Game 0. This is the standard DOGM game in Case 2, instantiated with the
WA-DOGM protocol. Thus we have AdvCONF = AdvG0.

Since the confidentiality of challenge messages is reliant on the secure distri-
bution of the inbound WA-RSS session state and the attachment pointers used
for history sharing, our proof of confidentiality proceeds similarity to that of
revocation and authentication. Specifically, the next three games look to prove
that any message sent between two uncorrupted devices (at the time the message
is sent and received) are both confidential and authentic. Note that we do so
irrespective of any particular challenge.
Game 1. We make an analogous change to Game 1 in Case 1. We introduce a
series of abort events, abortAwPO, for each user A ∈ [np]. The event is triggered
if any session, say πB,j

r , has WA-PO.Orbit calculate an orbit P for the user A
(which may be itself) at generation πB,j

r .Γ [A], neither user A nor device (A, 0)
have been corrupted at the time the orbit is calculated, and at least one of the
following is true.

1) There exists an identity key ipk c within P that was not added to A in the
processing of an honest Create query. Specifically, if there exists ipk c ∈ P
for which no query of the form Create(A, i) 7→ dpkA,i has been issued for
some i ∈ [nd] such that dpkA,i.ipk = ipk c.

2) There exists an identity key ipk c within P that has been revoked by A in
the processing of an honest Revoke query and the verifying session is aware
of a sufficiently recent orbit generation. Specifically, if there exists ipk c ∈ P
for which a query of the form Revoke(A, i) 7→ dpkA,i has been issued for
some i ∈ [nd] such that dpkA,i.ipk = ipk c and πB,j

r .Γ [A] ≥ dpkA,i.γ.
We bound the probability of each event occurring iteratively, for each user in
turn, by a hybrid argument.

Consider the following security reduction, B, which we construct against
the weak public-key orbit security of the WA-PO scheme. Let CwPO denote the
challenger, for which we replace the primary key of user A with the primary
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key, pkp, provided by the challenger at the initialisation of our reduction. We
proceed to emulate Game 0 to our inner adversary with the following changes.
Whenever each party needs to update orbA, rather than computing it themselves,
our reduction passes the appropriate query to the challenger, CwPO: querying
PO.Attract when adding companion keys, PO.Repel when removing companion
keys, and PO.Refresh to refresh the state, orbA. Further still, whenever a device’s
identity key is required to sign its key exchange counterpart or the medium-term
pre-key, our reduction issues a query to the Sign limited signing oracle exposed
by CwPO.

Whenever the adversary issues a CorruptUser(A) or CorruptDevice(A, 0) query,
we utilise the CwPO challenger’s Compromise query to reveal the secret key to the
adversary. We do the same for the corruption of companion devices, making use
of the CwPO challenger’s Eject query. The reduction tracks the expected values of
the “to” and “from” sets of the wPO security experiment, T and F , upon each
change that is made through the aforementioned queries. They do so for user A
at each generation of their orbit state.

If at any point, any session πB,j
r has WA-PO.Orbit calculate an orbit P∗ for

user A at generation γ∗ and either ‘P∗ \ T ′ 6=? ∅’ or ‘P∗ ∩ C \ F 6=? ∅’ evaluates
to true for the values of T ′ and F at generation γ∗, and neither user A nor device
(A, 0) have been corrupted at the time the orbit is calculated, the orbit state and
generation can be submitted to the challenger CwPO to win the experiment.

Applying the reduction above for each of the np users in the experiment and,
in turn, each respective abort event, we therefore find:

AdvG0 ≤ AdvG1 + np · AdvwPO
WA-PO(λ, nd − 1, 2 · nd, 2 · nd − 1)

Game 2. We make an analogous change to Game 2 in Case 1. We define a
set of events, {eventA,i

ipk : ∀ A ∈ [np], i ∈ [nd]}, one for every possible device in
the experiment. For the device (A, i) with identity keys (isk , ipk), we introduce
a set ΣA,i in which the challenger records every honest message-signature pair,
(m,σ), produced through a call to XEd.Sign(isk ,m) whilst processing a query.
The eventA,i

ipk event is triggered if, at any point in the experiment, a session has a
call to XEd.Verify(ipk ,m′, σ′) evaluate to true but the pair (m′, σ′) is not present
in the set ΣA,i and the device (A, i) has not been corrupted at this point in the
experiment (either through a call to CorruptDevice(A, i) or CorruptUser(A) when
i = 0).

We then introduce an abort event, abortipk , that is triggered if one or more
of the aforementioned events occurs, and look to bound the probability of the
abortipk abort event occurring. We do so through a sequence of D := np · nd

hybrids: Game 1.0, Game 1.1, . . . , Game 1.D. In the h-th hybrid, we track
the signatures of the first h devices that are created in the experiment, and trigger
the abort event as soon as a forgery is detected for an uncorrupted device (as
described above). It follows that Game 1.0 is exactly Game 1 and Game 1.D
is exactly Game 2. We now consider the change in advantage between two
consecutive hybrids, Game 1.h and Game 1.(h+1).
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We construct an adversary B against a SUF-CMA challenger for the XEd
signature scheme, which we denote CDS. Our adversary proceeds to emulate the
security experiment to our inner adversary, A, with the following changes. Let
(A, i) be the (h + 1)-th device created in the security experiment. We replace
the generation of (isk , ipk) for this device with the challenge key pk provided by
the CSUF-CMA challenger. Whenever B requires a signature under isk , rather than
computing the signature σ itself, B instead queries CSUF-CMA with the message m.
If any session receives a signature σ′ that verifies correctly under pk but was not
honestly generated by the device (A, i), then this means that the adversary has
created a signature σ′ that was not output by CSUF-CMA, but verifies correctly. In
other words, they have created a forgery. Note that the abort event will not be
trigger if the adversary has corrupted the device (via a call to CorruptDevice(
A, i) or CorruptUser(A) when i = 0), such that this reduction does not need to
consider cases where the secret signing key is revealed to the adversary.

Applying this reduction to each hybrid in turn, we find that:

AdvG1 ≤ AdvG2 + np · nd · AdvSUF-CMA
XEd (λ, 2)

Game 3. We make a similar change to Game 3 in Case 1. In this game, we
abort if any session, πA,i

s , accepts a pairwise ciphertext from a device, (B, j), but
the message was not the honest output of that device and none of CorruptUser(
B), CorruptDevice(B, 0) and CorruptDevice(B, j) have previously been issued by
the challenger.

To do so, we introduce a reduction B against a challenger for the PAIR-SEC
security of the WA-PAIR scheme. Denote this challenger by CPAIR. Our reduction
emulates Game 2 to the inner adversary, A, with the following changes. Our
reduction proceeds to replace the pairwise channel keys for each device with a set
output by the CPAIR challenge. Our adversary, B, maintains a mapping between
the device indices of the PAIR-SEC experiment and those of our emulated DOGM
experiment.

Whenever a session πA,i
s initialises a new pairwise channel with a session

πB,j
r , the reduction instead simply queries Encrypt(i, j, sid,m,m) to CPAIR, where

m is the message that would have been encrypted honestly. We maintain a
record of the sessions that have been initiated between any two devices and the
session identifiers they use. The output ciphertext c replaces the generation of
the ciphertext by B. Note that since we submit the same message as m0 and m1,
then this is no different to B generating the ciphertext honestly.

Whenever the inner adversary, A, calls CorruptDevice(B′, j′) for some device
(B′, j′), our reduction uses its device identifier mapping to submit the appropriate
CorruptIdentity, CorruptShared or CorruptSession queries to CPAIR, making sure to
query CorruptSession for all of that device’s sessions. Similarly, whenever the inner
adversary calls CorruptUser(B′) for some user B′, our reduction uses its device
identifier mapping to submit the appropriate CorruptIdentity query to CPAIR.

Note that, since we only trigger the abort event when none of CorruptUser(B),
CorruptDevice(B, 0) and CorruptDevice(B, j) for the claimed sending device (B, j)
have previously been issued by the challenger in the emulated experiment, the
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WA-PAIR security predicate is satisfied. Thus, whenever the abort event triggers,
the resulting message is a valid forgery against the CPAIR challenger. We take the
forged pairwise message m′ accepted by πA,i

s and submit it to CPAIR by issuing
the appropriate decryption query, resulting in CPAIR setting the win flag to true.

It follows that anytime the inner adversary triggers the abort event, then
it can be turned into an authentication break against the PAIR-SEC security of
WA-PAIR and thus:

AdvG2 ≤ AdvG3 + AdvPAIR-SECWA-PAIR (λ, np · nd, 2 · ne , np · nq)

The changes introduced in this game ensure that all pairwise channel messages
exchanged between uncorrupted devices were honestly generated.

Game 4. We consider a series of N hybrids where N := np · nd · ni · ns · nm; one
for each possible challenge encryption that may be triggered in the game. For
the h-hybrid, we look to bound the advantage of the adversary in determining
the challenge bit through the h-th challenge encryption. We find, by a hybrid
argument:

AdvG3 ≤ np · nd · ni · ns · nm · AdvG4

In what follows, we bound the advantage of an adversary in a single such
hybrid, and do so through the following sequence of games.

Game 5. In this game, we guess the session πA,i
s and stage t of the h-th challenge

encryption, such that the adversary issues a Encrypt(A, i, s,m0,m1) query for
which m0 6= m1. We guess a tuple of values, (A, i, s, t), at the start of the
experiment and abort if the h-th challenge encryption query is not made to πA,i

s

within stage t. It follows that,

AdvG4 ≤ np · nd · ni · ns · AdvG5

See that, by construction of the DOGM experiment, the adversary cannot
win if the challenge encryption query we handle in this hybrid does not satisfy
the confidentiality predicate. Thus, we will assume that it may be applied to
our guessed challenge query). Letting c be our challenge ciphertext, such that
C = { ( c, A, i, s, t, z ) }, we can be sure of the values of A, i, s and t from the
start of the experiment, but we do not necessarily know the values of z, the
communicating partners, CU and CD, or the plaintexts, m0 and m1, ahead of
the challenge.

Game 6. When πA,i
s initialises stage t, we record the list of communicating users

and devices.
We proceed to simulate the use of pairwise channels to distribute messages

privately between each pair of devices. For those pairwise messages that distribute
the inbound WA-RSS session state, or a history sharing attachment pointer, that
allows decryption of our challenge encryption, we replace the plaintext message,
m, with a random bit-string of the same length, m̃, and store this mapping in
a table we maintain for each sending device. Whenever a session decrypts a
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pairwise ciphertext, we replace its output with appropriate value from our table
(where applicable).

How do we determine which pairwise messages to replace? Any pairwise
message distributing the inbound WA-RSS state for stage t when the challenge
has not yet occurred must be replaced (since it will contain symmetric state that
may be ratcheted forward to the message index of the challenge). However, after
the challenge encryption has occurred, we must limit our replacement to those
with a message index less than the challenge message index. History sharing
messages are selected in the opposite fashion. No history sharing message can
give access to a challenge encryption until after the challenge encryption has
occurred and, as such, they must not be replaced. Once the challenge encryption
has occurred, we know that any history sharing message for a message index less
than or equal to that of the challenge will provide access to its plaintext.45

Consider the following reduction, B, which we construct against a challenger
for the PAIR-SEC security of the WA-PAIR scheme. Denote this challenger by
CPAIR. Our reduction proceeds to emulate the security experiment to the inner
adversary similarly to our reduction in Game 3, with a few changes. As before, it
replaces the pairwise channel keys for each device with the set output by the CPAIR
challenge. Our adversary, B, maintains a mapping between the device indices
of the PAIR-SEC experiment and those of our emulated DOGM experiment.
Whenever a session needs to encrypt a message, m, over a pairwise channel, our
reduction proceeds to forward the encryption request on as normal, with the
following exception. If the plaintext is a WA-RSS session distribution message or
an attachment pointer for a history sharing message of a challenge encryption,
our reduction generates a random replacement for the plaintext, m̃, and submits
an encryption challenge to the CPAIR challenger with (m0,m1), where m0 is the
original message m and m1 is its random replacement m̃. Observe that the
confidentiality predicate for WA-DOGM implies the confidentiality predicate for
WA-PAIR.

When the bit b sampled by CPAIR is 0, then the output ciphertext encrypts
m honestly and we are in Game 5. However, if the bit b sampled by CPAIR is 1,
then the output ciphertext encrypts m̃ instead and we are in Game 6. Thus,
any adversary that can distinguish our change can be turned into a successful
adversary against the PAIR-SEC security of WA-PAIR and we find:

AdvG5 ≤ AdvG6 + AdvPAIR-SECWA-PAIR (λ, np · nd, 2 · ne , np · nq)

Game 7. In this game, we replace the key k that is used to encrypt and
authenticate any history sharing attachment sent by a recipient primary device
(B, 0) for B ∈ CU with a uniformly random and independent value. Since this
may only occur after the initial distribution of the WA-RSS session state, the
challenger has full knowledge of the set CU at the point in time these replacements
need to be made.
45 See that our implementation of history sharing in WA-DOGM shares all plaintexts

in the requested stage with a message index greater than or equal to the requested
message index.
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Specifically, we introduce a reduction B that interacts with a PRF challenger
CPRF of key length 256 and output length 896. We consider any StateShare(
B, 0, p, B, j, t′, z′) query from a session πp

B,0 for which B ∈ CU and πp
B,0.usid [t

′] =

πA,i
s .usid [t] to a device (B, j) for stage t′ and message index z′. For each such

query, rather than computing k honestly, B instead queries the CPRF challenger’s
PRF oracle with r and replaces k with the output, which we denote k̃.

By Game 6, the seed r used to compute k is a uniformly random value and
independent of the protocol execution. Thus, when the bit b sampled by CPRF is
1, then the output key k̃ is identically distributed to k and we are in Game 6.
However, if the bit b sampled by CPRF is 0, then k̃ ←$ {0, 1}896 instead and we
are in Game 7.

Thus, any adversary that can distinguish our change can be turned into a
successful adversary against the PRF security of HKDF. We apply this reduction
iteratively, by a hybrid argument, for which the number of hybrids is the maximum
number of such history sharing messages. We may calculate the maximum number
of relevant history sharing ciphertexts in the same manner as is done in Game 6
of Case 1. Thus, we find:

AdvG6 ≤ AdvG7 + np · (nd − 1) · 2 · ne · np · nq · AdvPRFHKDF(λ, 1)

Game 8. In this game, we demonstrate that no history sharing ciphertext
encrypting mb leaks anything about the challenge plaintext, by the IND-CPA
security of AES-CBC. We do so by replacing the ciphertext encrypting the history
sharing attachment with a random bit string of the same length. As in Game 7,
since the creation of history sharing attachments occurs after the initialisation of
stage t, the challenger has full knowledge of which plaintexts need replacement
at the point in time these replacements are made.

Specifically, we introduce a reduction B that interacts with an IND-CPA
challenger CIND-CPA: when Game 8 would normally encrypt the plaintext mb

using aek (truncated from k′) using a call to AES-CBC, our reduction B instead
computes issues an encryption query for mb to the CIND-CPA (mb,m

′
b) (where m′

b

is a uniformly random string of the same length). Since aek is already uniformly
random and independent of the protocol flow by Game 7, this change is sound.
Note that when the bit b sampled by CIND-CPA is 0, then the challenge plaintext
mb is encrypted and we are in Game 7. However, if the bit b sampled by CIND-CPA

is 1, then the HS ciphertext is a uniformly random string instead and we are in
Game 8.

Any adversary that can distinguish our change can be turned into a successful
adversary against the IND-CPA security of AES-CBC and thus:

AdvG7 ≤ AdvG8 + np · (nd − 1) · 2 · ne · np · nq · AdvIND-CPA
AES-CBC(λ, 1)

Game 9. In this game, we show that if the adversary, A, can distinguish between
the encryption of m0 and m1 by πA,i

s then they can be turned into a successful
adversary against the PFS-OAE security of the WA-RSS scheme.
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Specifically, we define a reduction B that acts identically to Game 9. However,
when the test session πA,i

s initialises the WA-RSS state at the beginning of
stage T , B instead initialises a PFS-OAE challenger CPFS-OAE that generates a
receiving state str for them. Since the receiving state is never sent in the pairwise
channel (by Game 6) then this replacement cannot be detected by the adversary.
Whenever πA,i

s needs to encrypt using the WA-RSS sending state sts, B instead
queries CPFS-OAE with Send(m0,m1). If, after the challenge encryption query was
made to B, A calls Compromise(A, i, s), B queries CPFS-OAE with Corrupt and
returns the output sending state sts to A. When A terminates, and outputs a
bit b, B simply forwards it to CPFS-OAE.

The success of A is bound by the success of B, and thus we find:

AdvG8 ≤ AdvPFS-OAE
WA-RSS (λ, nm)

This completes our analysis of Case 2.
We combine the two cases above to arrive at the upper bound in the theorem

statement. Observe that the above bound is a polynomial function of the exper-
iment parameters, ΛDOGM = (np, nd, ni, ns, nm), and the respective advantage
against the security of each primitive used. It follows that the advantage of any
PPT adversary is at most a negligible function of the security parameter used to
instantiate each primitive.

This completes our proof. ut

8 Interpretation & Discussion

We first reiterate the provided guarantees from the perspective of an individual
device; the level at which WhatsApp gives meaningful guarantees. We then
summarise caveats to these guarantees.

Confidentiality and authentication. Messages sent from a device are confidential
between itself and the verified devices of a group’s members. Similarly, our device
will only accept messages from verified devices of the group’s members. These
guarantees are maintained throughout changes to both the group membership
and each member’s device composition.

When a device is notified that a member has been added to the group, that
user’s verified devices will have access to future messages but not those from the
past. When a device is notified that a member has been removed from the group,
the removed user’s devices will not have access to future messages. However, note
that user group membership is controlled by the server.

When our device is notified that a member has added a new device, the
new device will have access to future messages.46 When our device is notified
that a member has revoked a device, the revoked device will not have access
to future messages. Unlike group membership, users control their own device
46 Whilst the new device is not able to decrypt past ciphertexts, the history sharing

feature gives it access to the same historical messages as the user’s other devices.
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lists. The inclusion of in-chat device consistency information in pairwise messages
guarantees that device revocation can be detected if our device is able to securely
communicate with at least one honest device of the other user. Additionally,
while our analysis does not capture the automatic expiry of device lists, this
mechanism provides an upper bound for the time taken for device revocations to
be detected.

Device revocation. WhatsApp’s device management sub-protocol enables a user to
effectively recover from a detected compromise of any number of their companion
devices. If a user suspects, say, their laptop was compromised, they can remove
the device from their account using their phone by sending a direct message
to another user. This is because the ICDC information added to the follow-up
message alerts the other user’s devices that a new generation of the multi-device
state is available.47 If the message is blocked by the adversary, the device list
will eventually expire which make the primary device the only verified device for
our user.

Adversarially-controlled group management. As mentioned above and in prior
works, WhatsApp’s design and implementation are insecure in allowing the server,
i.e. the adversary, to control group membership. While a correctly implemented
client will prevent the addition of ghost, i.e. invisible, users or devices,48 this still
means those reliant on WhatsApp do not have control over who they communicate
with and to whom their devices will distribute session keys. Put differently, the
adversary’s presence in a group chat will not be invisible in correctly implemented
clients, but an adversary calling itself “Alice” in a group chat of 1024 users is
arguably reasonably well hidden from its surveillance targets.

Moreover, as a corollary, there is also no consistency guarantees among users
or even devices of a user. For example, Alice may be given a different view of
group membership to Bob and Alice’s laptop may have a different view of group
membership than Alice’s phone. Alice checking for adversarially added members
on her phone does not mean that none have been added to her laptop and Bob
cannot validate group membership on behalf of the other group members. This
is reflected in our model: the DOGM security experiment gives the adversary
control over the group membership and does not guarantee a consistent view of
group membership to individual sessions.

Unclear client enforcement of group membership. As discussed in Section 3.3,
we were not able to find evidence that clients delete the inbound Sender Keys
sessions associated with past members of the group (when they are removed). If
it is the case that such sessions are not removed (and the removal is not enforced
through some alternate means), it follows that the removal of a participant from
the group would not prevent them from sending messages in that group.
47 We note that the inclusion of ICDC information within group messaging ciphertexts

would improve the speed with which communicating partners will detect a device
revocation.

48 Ghost users were a 2018 GHQ proposal to circumvent end-to-end encryption [47].
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Lack of domain separation. WhatsApp (like Signal) utilises the same key pair
for the long-term device keys used for key exchange and signatures.49 Following
prior work, we do not model this lack of domain separation and stress that the
security implications are unknown.

Lack of post-compromise security. Our analysis in Section 5 follows [28, 30] in
demonstrating that WhatsApp’s pairwise channels lack meaningful PCS guar-
antees considering their use of multiple parallel sessions between devices. When
only pairwise session secrets have been compromised, recovery requires for each
compromised session to either have healed (through the Double Ratchet) or to
have been rotated out of the session list. The latter case requires the adversary to
be passive while 40 new honest sessions are created.50 When a device’s identity
key have been compromised, the multi-session setting enables the adversary to
initialise a new compromised session at any point in the future. This contrasts
with the single-session setting where compromise of the identity key does not
affect the security of existing conversations [25].51 Since there is little practical
difference between compromise of a device’s identity key and pairwise session
state, our analysis in Section 7 combines these two cases.

In addition, WhatsApp clients keep the five most recent inbound Sender
Keys sessions sent by each device, which limits the post-compromise security of
messages in group chats, an issue that is compounded by the aforementioned lack
of meaningful PCS in pairwise channels used to distribute Sender Keys sessions.
In the case that only the Sender Keys session states are compromised, security
can be restored after the sender has rotated the Sender Keys state five times,
i.e. after five membership changes where the compromised sender has sent a
message between each change (to trigger session rotation). However, if pairwise
session state has been compromised, security is only guaranteed after the pairwise
channels have healed and then the sender key has been rotated five times.52

Echoing the discussion in [3], we note that, while this contrasts with PCS
guarantees in the cryptographic literature, this is not unusual. Given that many
deployed protocols lack meaningful PCS guarantees and that prior work es-
tablished that these guarantees do not match up well with some higher-risk
49 We note that WhatsApp adds another domain to the mix in comparison to Signal.
50 The PAIR.AUTH and PAIR.CONF security predicates state when we should expect the

respective security guarantee to apply from the perspective of the challenger in the
PAIR-SEC security experiment (with a global view of the protocol execution). In
contrast, these statements describe when an honest client, with knowledge of the
start and end of a compromise, can be sure that security has been restored.

51 In the terminology of [27], this setting does not provide PCS via state but does
provide PCS via weak compromise, if all compromised sessions have healed or expired.

52 When clients store previous Sender Keys sessions to allow out-of-order decryption,
this issue can be mediated by including the number of messages sent in the last
session when initiating a new session. The recipient can then derive the message keys
for the missing messages from the previous session, allowing it to safely destroy the
chain key. Indeed, a similar issue exists across consecutive epochs of Signal pairwise
channels, where a similar improvement has been discussed [34].
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settings [1], we consider the question of what PCS guarantees should be targeted
in design an exciting area for future multidisciplinary work. Here, we highlight
WhatsApp’s approach to tackle detected compromises via device revocation,
which does not map to the PCS notions in the literature but seems to provide
meaningful guarantees for some important settings.
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SIGNAL.CLEAN(asym-ri, i, j, sid, z is
=[asym-ri :x ≥ 2]) :=

SIGNAL.CLEAN(EE, i, j, [asym-ri :x], [asym-ir :x− 1]) ∨
(SIGNAL.CLEAN(state, i, j, sid, z) ∧ SIGNAL.CLEAN(asym-ir, i, j, sid, [asym-ir :x− 1]))

SIGNAL.CLEAN(asym-ir, i, j, sid, z is
=[asym-ir :x]) := SIGNAL.CLEAN(EE, i, j, [asym-ir :x], [asym-ri :x])

∨ (SIGNAL.CLEAN(state, i, j, sid, z) ∧ SIGNAL.CLEAN(asym-ri, i, j, sid, [asym-ri :x]))

SIGNAL.CLEAN(sym-ir, i, j, sid, z is
=[sym-ir : 0, 1]) :=

SIGNAL.CLEAN(state, i, j, sid, z) ∧ SIGNAL.CLEAN( · , i, j, sid, [0])

SIGNAL.CLEAN(sym-ir, i, j, sid, z is
=[sym-ir :x ≥ 1, y = 1]) :=

SIGNAL.CLEAN(state, i, j, sid, z) ∧ SIGNAL.CLEAN(asym-ir, i, j, sid, [asym-ir :x])

SIGNAL.CLEAN(sym-ir, i, j, sid, z is
=[sym-ir :x ≥ 0, y ≥ 2]) :=

SIGNAL.CLEAN(state, i, j, sid, z) ∧ SIGNAL.CLEAN(sym-ir, i, j, sid, [sym-ir :x, y − 1])

SIGNAL.CLEAN(sym-ri, i, j, sid, z is
=[sym-ri :x ≥ 1, y = 1]) :=

SIGNAL.CLEAN(state, i, j, sid, z) ∧ SIGNAL.CLEAN(asym-ri, i, j, sid, [asym-ri :x])

SIGNAL.CLEAN(sym-ri, i, j, sid, z is
=[sym-ri :x ≥ 0, y ≥ 2]) :=

SIGNAL.CLEAN(state, i, j, sid, z) ∧ SIGNAL.CLEAN(sym-ri, i, j, sid, [sym-ri :x, y − 1])

SIGNAL.CLEAN(LM, i, j, sid)

1 : · , sst ← ∗PAIR.FindSession(sk i.ssts[ipk j ], sid)

2 : if sst .role = init : return (corr-ident, i, · ) /∈ L ∧ (corr-share, j, · ) /∈ L

3 : elseif sst .role = resp : return (corr-share, i, · ) /∈ L ∧ (corr-ident, j, · ) /∈ L

SIGNAL.CLEAN(EL, i, j, sid, z is
=[0])

1 : · , sst ← ∗PAIR.FindSession(sk i.ssts[ipk j ], sid)

2 : if sst .role = init : return (corr-sess, i, j, sid, [0], · ) /∈ L ∧ (corr-ident, i, · ) /∈ L

3 : elseif sst .role = resp : return SIGNAL.CLEAN(peerE, i, j, sid, [0]) ∧ (corr-ident, i, · ) /∈ L

SIGNAL.CLEAN(EM, i, j, sid, z is
=[0])

1 : · , sst ← ∗PAIR.FindSession(sk i.ssts[ipk j ], sid)

2 : if sst .role = init : return (corr-sess, i, j, sid, [0], · ) /∈ L ∧ (corr-share, i, · ) /∈ L

3 : elseif sst .role = resp : return SIGNAL.CLEAN(peerE, i, j, sid, [0]) ∧ (corr-share, i, · ) /∈ L

SIGNAL.CLEAN(EE, i, j, sid, z, z′)

1 : · , sst ← ∗PAIR.FindSession(sk i.ssts[ipk j ], sid)

2 : if sst .role = init : return (corr-session, i, j, sid, z, · ) /∈ L ∧ SIGNAL.CLEAN(peerE, i, j, sid, z′)

3 : elseif sst .role = resp : return SIGNAL.CLEAN(peerE, i, j, sid, z) ∧ (corr-session, i, j, sid, z′, · ) /∈ L

SIGNAL.CLEAN(peerE, i, j, sid, z is
=[t : x, y])

1 : · , sst ← ∗PAIR.FindSession(sk j .ssts[ipk i], sid)

2 : if sst = (∅,∅) : return false

3 : elseif x = 0 ∧ sst .role = init : return (dec, j, i, sid, · ) precedes (corr-share, j, · ) in L

4 : else : return (corr-session, j, i, sid, z, · ) /∈ L

5 : ∧ ∃ (enc, j, i, sid, z, (ckex , · ), · ) ∈ L, (dec, i, j, sid, z, (ckex ′ , · ), · ) ∈ L : ckex = ckex ′

SIGNAL.CLEAN(state, i, j, sid, z) := (corr-session, i, j, sid, z, · ) /∈ L ∧ (corr-session, j, i, sid, z, · ) /∈ L

A.2 Security Reductions
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BSend,Test,Rev∗

SIGNAL,A (pubinfo)

1 : b←$ {0, 1}; win ← 0; L← [ ]

2 : ssts ← Map{}; MK← Map{}; used-epks ← Map{}
3 : (ipk0, . . . , ipknp−1), (spks0, . . . , spksnp−1), (epks0, . . . , epksnp−1)← pubinfo

4 : b′ ← AEnc,Dec,Corrupt∗({(ipk0, spks0), . . . , (ipknp−1, spksnp−1)}, {epks0, . . . , epksnp−1})

5 : return b = b′ ∧ PAIR.CONF(L)

Enc(i, j, info , sid,m0,m1)

1 : assert len(m0) = len(m1)

2 : if sid = ∅ : sid← info [0]

3 : s← ssts[i, j, sid]

4 : if s = ∅ :

5 : s← len(ssts[i, · ])
6 : Send(i, s, (ipk j , 0, init))

7 : ckex ← Send(i, s, sid)

8 : ssts[i, j, sid]← s

9 : else :

10 : ckex ← Send(i, s,∅)

11 : if (i, j, sid, stage) /∈MK :

12 : MK[i, j, sid, stage]← Test(i, s, stage)

13 : mk ←MK[i, j, sid, stage]

14 : assert mk 6= ⊥
15 : cmsg ←WA-AEAD.Enc(mk , ckex ,mb)

16 : c← (ckex , cmsg)

17 : L←app (enc, i, j, sid,m0,m1, c)

18 : return sid, c

Dec(i, j, info , sid, c)

1 : ckex , cmsg ← c

2 : if sid = ∅ : sid← ckex .epk resp

3 : s← ssts[i, j, sid]

4 : if s = ∅ :

5 : assert sid in epksi \ used-epks[i]
6 : used-epks[i]←∪ {sid}
7 : s← len(ssts[i, · ])
8 : ssts[i, j, sid]← s

9 : Send(i, s, (ipk j , 0, sid, resp))

10 : Send(i, s, ckex )

11 : else :

12 : Send(i, s, ckex )

13 : if (j, i, sid, stage) /∈MK :

14 : MK[j, i, sid, stage]← Test(i, s, stage)

15 : mk ←MK[j, i, sid, stage]

16 : assert mk 6= ⊥
17 : m←WA-AEAD.Dec(mk , ckex , cmsg)

18 : if m = ⊥ : return ⊥
19 : replay ← (dec, i, j, sid, c, · ) ∈ L

20 : forgery ← (enc, j, i, sid, · , · , c) /∈ L

21 : win ← replay ∨ (forgery ∧ PAIR.AUTH(L))

22 : L←app (dec, i, j, sid, c,m)

23 : if c ∈ ∗Challenges(L) : return ⊥
24 : return sid,m

CorruptIdentity(i)

1 : assert 0 ≤ i < np

2 : corr ← RevLongTermKey(i)

3 : L←app (corr-ident, i, corr)

4 : return corr

CorruptShared(i)

1 : assert 0 ≤ i < np

2 : esks ← [RevEphemKey(i, e)

for (e, epk) in epksi

3 : if epk /∈ used-epks]

4 : ssk ← RevMedTermKey(i, 0)

5 : corr ← ssk , esks

6 : L←app (corr-share, i, corr)

7 : return corr

CorruptSession(i, j, sid)

1 : assert 0 ≤ i, j < np

2 : s← ssts[i, j, sid]

3 : sst ← RevState(i, s, s.stage)

4 : rchsk ← RevRand(i, s, s.stage)

5 : corr ← (sst , rchsk)

6 : L←app (corr-sess, i, j, sid, corr)

7 : return corr

Fig. 27: BSend,Test,Rev
∗

SIGNAL,A (pubinfo)
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BEUF-CMA,Enc
WA-AEAD,A ()

1 : forged-msg ← ∅; gi ←$ {0 . . . np − 1}; gj ←$ {0 . . . np − 1}; gs ←$ {0 . . . ni − 1}; gz ←$ {0 . . . nm − 1}
2 : S← Map{}; Z← Map{ · : 0}; win ← 0; L← [ ]; ssts ← Map{}; MK← Map{}
3 : for i = 0, 1, 2, . . . , np − 1 :

4 : ipk i, isk i ←$ SIGNAL.KeyGen(); spk i, ssk i ←$ SIGNAL.MedTermKeyGen()

5 : for e = 0, 1, 2, . . . , ne − 1 : epke, eske ←$ SIGNAL.EphemKeyGen()

6 : esksi ← {eske : 0 ≤ e < ne}; epksi ← {epke : 0 ≤ e < ne}

7 : b′ ← AEnc,Dec,Corrupt∗({(ipk0, spk0), (ipk1, spk1), . . . , (ipknp−1, spknp−1)}, {epks0, epks1, . . . , epksnp−1})

8 : return forged-msg

Enc(i, j, info , sid,m0,m1)

1 : assert m0 = m1

2 : if sid = ∅ :

3 : epk j ← info [0]; sid← epk j

4 : sst ← ssts[i, j, sid]

5 : if sst = ∅ :

6 : sst , · ←$ SIGNAL.Activate(isk i, ssk i, init, ipk j)

7 : sst , ckex ←$ SIGNAL.Run(isk i, ssk i, sst , (spk j , sid))

8 : S[i, j, sid]← len(S[i, j, · )]
9 : else :

10 : sst , ckex ←$ SIGNAL.Run(isk i, ssk i, sst ,∅)

11 : assert sst .status[sst .stage] = accept

12 : if (i, j, sid, sst .stage) /∈MK :

13 : MK[i, j, sid, sst .stage]←$ K
14 : mk ←MK[i, j, sid, sst .stage]

15 : Z[i, j, sid]← Z[i, j, sid] + 1

16 : if (i, j,S[i, j, sid],Z[i, j, sid]) = (gi, gj , gs, gz) :

17 : cmsg ← AEAD.Enc(ckex ,m0)

18 : else :

19 : cmsg ←WA-AEAD.Enc(mk , ckex ,m0)

20 : c← (ckex , cmsg)

21 : ssts[i, j, sid]← sst

22 : L←app (enc, i, j, sid,m0,m1, c)

23 : return sid, c

Dec(i, j, info , sid, c)

1 : ckex , cmsg ← c

2 : if sid = ∅ : epk i ← ckex .epk resp ; sid← epk i

3 : sst ← ssts[i, j, sid]

4 : if sst = ∅ :

5 : [esk ]← [esk ′ in esksiif epk i = PK(esk ′)]

6 : sst , · ←$ SIGNAL.Activate(isk i, ssk i, resp, ipk j , esk)

7 : sst , · ←$ SIGNAL.Run(isk i, ssk i, sst , ckex )

8 : esks ← [esk ′ in esks if esk 6= esk ′]

9 : S[i, j, sid]← len(S[i, j, · )]
10 : else : sst , · ←$ SIGNAL.Run(isk i, ssk i, sst , ckex )

11 : assert sst .status[sst .stage] = accept

12 : if (j, i, sid, sst .stage) /∈MK : MK[j, i, sid, sst .stage]←$ K
13 : mk ←MK[j, i, sid, sst .stage]

14 : Z[i, j, sid]← Z[i, j, sid] + 1

15 : if (j, i,S[j, i, sid],Z[i, j, sid]) = (gi, gj , gs, gz) :

16 : m← AEAD.Dec(ckex , cmsg)

17 : else : m←WA-AEAD.Dec(mk , ckex , cmsg)

18 : if m = ⊥ : return ⊥
19 : ssts[i, j, sid]← sst

20 : replay ← (dec, i, j, sid, c, · ) ∈ L

21 : forgery ← (enc, j, i, sid, · , · , c) /∈ L

22 : guess ← (j, i,S[j, i, sid],Z[i, j, sid]) = (gi, gj , gs, gz)

23 : if replay ∨ (forgery ∧ PAIR.AUTH(L)) :

24 : if guess : forged-msg ← c else : abort

25 : L←app (dec, i, j, sid, c,m)

26 : return sid,m

CorruptIdentity(i)

1 : assert 0 ≤ i < np

2 : corr ← isk i

3 : L←app (corr-ident, i, corr)

4 : return corr

CorruptShared(i)

1 : assert 0 ≤ i < np

2 : corr ← (ssk i, esksi)

3 : L←app (corr-share, i, corr)

4 : return corr

CorruptSession(i, j, sid)

1 : assert 0 ≤ i, j < np

2 : corr ← ssts[i, j, sid]

3 : L←app (corr-sess, i, j, sid, corr)

4 : return corr

Fig. 28: BEUF-CMA
WA-AEAD,A
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BIND$-CPA,Enc
WA-AEAD,A ()

1 : b←$ {0, 1}; L← [ ]; ssts ← Map{}; MK← Map{}
2 : for i = 0, 1, 2, . . . , np − 1 :

3 : ipk i, isk i ←$ SIGNAL.KeyGen(); spk i, ssk i ←$ SIGNAL.MedTermKeyGen()

4 : for e = 0, 1, 2, . . . , ne − 1 : epke, eske ←$ SIGNAL.EphemKeyGen()

5 : esksi ← {eske : 0 ≤ e < ne}; epksi ← {epke : 0 ≤ e < ne}

6 : b′ ← AEnc,Dec,Corrupt∗({(ipk0, spk0), (ipk1, spk1), . . . , (ipknp−1, spknp−1)}, {epks0, epks1, . . . , epksnp−1})

7 : return (b = b′ ∧ PAIR.CONF(L))

Enc(i, j, info , sid,m0,m1)

1 : assert len(m0) = len(m1)

2 : if sid = ∅ :

3 : epk j ← info [0]; sid← epk j

4 : sst ← ssts[i, jsid]

5 : if sst = ∅ :

6 : sst , · ←$ SIGNAL.Activate(isk i, ssk i, init, ipk j)

7 : sst , ckex ←$ SIGNAL.Run(isk i, ssk i, sst , (spk j , sid))

8 : else :

9 : sst , ckex ←$ SIGNAL.Run(isk i, ssk i, sst ,∅)

10 : assert sst .status[sst .stage] = accept

11 : if (i, j, sid, sst .stage) /∈MK :

12 : MK[i, j, sid, sst .stage]←$ K
13 : mk ←MK[i, j, sid, sst .stage]

14 : if m0 6= m1 ∧ |∗Challenges(L)| < x :

15 : cmsg ←$ C
16 : elseif m0 6= m1 ∧ |∗Challenges(L)| = x :

17 : cmsg ← AEAD.Enc(ckex ,mb)

18 : elseif m0 6= m1 ∧ |∗Challenges(L)| > n2
d · ni · nm :

19 : abort

20 : else :

21 : cmsg ←WA-AEAD.Enc(mk , ckex ,mb)

22 : c← (ckex, cmsg)

23 : ssts[i, j, sid]← sst

24 : L←app (enc, i, j, sid,m0,m1, c)

25 : return sid, c

Dec(i, j, info , sid, c)

1 : ckex , cmsg ← c

2 : if sid = ∅ :

3 : epk i ← ckex .epk resp ; sid← epk i

4 : sst ← ssts[i, j, sid]

5 : if sst = ∅ :

6 : [esk ]← [esk ′ in esksiif epk i = PK(esk ′)]

7 : sst , · ←$ SIGNAL.Activate(isk i, ssk i, resp, ipk j , esk)

8 : sst , · ←$ SIGNAL.Run(isk i, ssk i, sst , ckex )

9 : esks ← [esk ′ in esks if esk 6= esk ′]

10 : else :

11 : sst , · ←$ SIGNAL.Run(isk i, ssk i, sst , ckex )

12 : assert sst .status[sst .stage] = accept

13 : if (j, i, sid, sst .stage) /∈MK :

14 : MK[j, i, sid, sst .stage]←$ K
15 : mk ←MK[j, i, sid, sst .stage]

16 : m←WA-AEAD.Dec(mk , ckex , cmsg)

17 : if m = ⊥ : return ⊥
18 : ssts[i, j, sid]← sst

19 : L←app (dec, i, j, sid, c,m)

20 : if c ∈ ∗Challenges(L) : return ⊥
21 : return sid,m

CorruptIdentity(i)

1 : assert 0 ≤ i < np

2 : corr ← isk i

3 : L←app (corr-ident, i, corr)

4 : return corr

CorruptShared(i)

1 : assert 0 ≤ i < np

2 : corr ← (ssk i, esksi)

3 : L←app (corr-share, i, corr)

4 : return corr

CorruptSession(i, j, sid)

1 : assert 0 ≤ i, j < np

2 : corr ← ssts[i, j, sid]

3 : L←app (corr-sess, i, j, sid, corr)

4 : return corr

Fig. 29: BIND$-CPA
WA-AEAD,A
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