
Analysis of the Telegram Key Exchange⋆

Martin R. Albrecht1, Lenka Mareková2 , Kenneth G. Paterson2 , Eyal Ronen3 , and Igors Stepanovs4

1 King’s College London
martin.albrecht@kcl.ac.uk

2 Applied Cryptography Group, ETH Zurich
{lenka.marekova,kenny.paterson}@inf.ethz.ch

3 Tel-Aviv University
eyalronen@tauex.tau.ac.il

4 Amazon⋆⋆

igors.stepanovs@gmail.com

10 March 2025

Abstract. We describe, formally model, and prove the security of Telegram’s key exchange protocols
for client-server communications. To achieve this, we develop a suitable multi-stage key exchange
security model along with pseudocode descriptions of the Telegram protocols that are based on analysis
of Telegram’s specifications and client source code. We carefully document how our descriptions
differ from reality and justify our modelling choices. Our security proofs reduce the security of the
protocols to that of their cryptographic building blocks, but the subsequent analysis of those building
blocks requires the introduction of a number of novel security assumptions, reflecting many design
decisions made by Telegram that are suboptimal from the perspective of formal analysis. Along the
way, we provide a proof of IND-CCA security for the variant of RSA-OEAP+ used in Telegram and
identify a hypothetical attack exploiting current Telegram server behaviour (which is not captured in
our protocol descriptions). Finally, we reflect on the broader lessons about protocol design that can be
taken from our work.

⋆ This is the full version of a work that appeared at EUROCRYPT 2025.
⋆⋆ This work was conducted outside of the author’s employment at Amazon and is unrelated to their position at

Amazon.

https://orcid.org/0000-0001-8616-4150
https://orcid.org/0000-0002-5145-4489
https://orcid.org/0000-0002-6013-7426
https://orcid.org/0009-0009-3963-5584


Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Standard definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Parameters and syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Adversarial queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Security game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Telegram protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Custom primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Protocol definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Differences and the scope of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Theorem statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A Detailed protocol figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
B Model details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

B.1 Further differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
B.2 Modelling choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

C New security assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
C.1 4PRF: SHACAL-1 as a “four-way” PRF with leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
C.2 3TPRF: SHACAL-1 as a “three-time” PRF with leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
C.3 SPR: Sampler-based second-preimage resistance of SHA-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
C.4 UPCR: Unpredictable-prefix collision resistance of SHA-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
C.5 IND-KEY: Indistinguishability of key reuse between SKDF and NH . . . . . . . . . . . . . . . . . . . . . 35

D Analysis of Telegram-OAEP+ public-key encryption scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
D.1 Birthday bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
D.2 Standard definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
D.3 Shoup’s public-key encryption scheme OAEP+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
D.4 Public-key encryption scheme Telegram-OAEP+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

E TOTPRF: One-time pseudorandomness of truncated SHA-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
F INT-PTXT: Integrity of plaintexts of HtE-SE with respect to SKDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

F.1 Definition of INT-PTXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
F.2 SKDF is an OTPRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
F.3 UPREF: Prefix unpredictability of SKDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
F.4 USUFF: Suffix unpredictability of SKDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
F.5 Proof for INT-PTXT of HtE-SE and SKDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

G EUF-CMA: Existential unforgeability of MTProto 1.0 encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
G.1 Definition of EUF-CMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
G.2 KDFv1 is a PRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
G.3 UNPRED: Unpredictability of SEv1 on random keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
G.4 Proof for EUF-CMA of CHv1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

H Main proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
H.1 Proof for the two-stage protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
H.2 Proof for the three-stage protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

I The brittle monolith that is Telegram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
I.1 Proof complications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
I.2 Limitations of our proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



I.3 Reliance on unstudied assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
I.4 A hypothetical attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

1 Introduction

Telegram is a chat protocol, service and application suite. It enables users to exchange one-to-one and
group messages, features public broadcast channels, permits voice and video calls, public livestreams
and file sharing. As of July 2024, Telegram reportedly had 950 million monthly active users. For chat,
Telegram offers two modes: “cloud chats”, which provide encryption between clients and the Telegram
servers; and “secret chats”, offering end-to-end encryption between clients. The latter is optional and
not available for group chats. Prior research established that “secret chats” play a minor role, even in
heightened-risk settings such as among protesters [ABJM21]. For cloud chats, Telegram uses its own
bespoke MTProto 2.0 protocol to secure the connection between the Telegram servers and clients.5 Note
that the decision to use a bespoke protocol instead of a standardised one like TLS (which would be ideally
suited to the task of protecting client-server communications) is not unusual in the secure messenger
world. For example, WhatsApp uses a Noise protocol for client-server connections, while Threema, too,
employs its own bespoke protocol [PST23].

Prior work. The cryptographic core of Telegram’s MTProto 2.0 consists of a key exchange protocol and a
secure channel protocol. The amount of attention that has been paid to analysing the security of MTProto
2.0 is small in comparison to its significance and scale of deployment. Indeed, to date, no comprehensive
formal security analysis of this protocol has been conducted. In [JO16], an attack against the IND-CCA
security of MTProto 1.0 was reported, prompting an update to all parts of the protocol except the key
exchange. In [SK17] and [Kob18], vulnerabilities were identified in the Android client and Windows
Phone client, respectively, due to improper input validation. In [MV21] MTProto 2.0 was proven secure
in a symbolic model, but assuming ideal building blocks and abstracting away all implementation
and primitive details. Similarly, [CCD+23] provided a symbolic proof of the key exchange. While it
allowed for weaknesses in some underlying hash functions, it did not model, for example, the custom
SHA-1-then-IGE-mode-AES-encrypt scheme used in the MTProto 2.0 key exchange protocol.

In [AMPS22], formal theorems concerning the security guarantees of the MTProto 2.0 secure channel
protocol were proven (this channel roughly equates to the Record Protocol in TLS). These theorems hold in
a computational model, and so do not abstract away building blocks. Indeed, the authors [AMPS22] had
to rely on unstudied, somewhat ad-hoc assumptions about Telegram’s cryptographic building blocks due
to how these are composed in the protocol. Another interpretation of this prior work is that it managed
to coalesce Telegram’s idiosyncratic design decisions for MTProto 2.0 into two self-contained security
assumptions about SHACAL-2, the blockcipher underlying SHA-2, suitable for further cryptanalysis.
The same work also reported vulnerabilities in MTProto 2.0 at an implementation and at a protocol
level, which have since been mitigated. This highlights that for Telegram, symbolic models with perfect
building blocks are insufficient to provide strong assurances and a more detailed analysis is required.

Our contributions. We provide the first comprehensive analysis of the security of Telegram’s MTProto 2.0
key exchange protocol in a computational security model, establishing formal security guarantees under
clearly stated security assumptions concerning its building blocks.

We faced significant obstacles to attaining security guarantees for MTProto 2.0. In short, and in contrast
to a protocol like TLS 1.3, the protocol was not defined with formal security analysis in mind. Moreover,
the protocol lacks a complete specification of client and server behaviour (meaning that we must infer
some intended behaviour from client source code and infer as best we can from direct observation
some of the server behaviour). The protocol is also complicated, involving two different but related
sub-protocols, which we denote as MTP-KE2st and MTP-KE3st, both of them multi-stage (in the sense

5 Telegram’s web client, Telegram Web Z, uses TLS because it relies on WebSockets [vAP23].

3



of [FG14, FG17, DFGS21, DDGJ22]), with key material established in one being carried forward into the
other.

On the surface, these two sub-protocols do look quite simple and therefore amenable to analysis: for both,
in a first stage, RSA encryption is used to transport a session key from the client to the server and, in a
second stage, this session key is used to protect a Diffie-Hellman (DH) key exchange in a prime field; the
final session key is made from the shared DH value. MTP-KE3st has a third stage in which a previously
established session key is used to authenticate the client to the server over an MTProto 2.0 secure channel.

However, the protocols rely on non-standard building blocks, such as a custom variant of the RSA-
OAEP+ scheme [Sho02] lacking proper domain separation and relying on IGE mode internally, yet
whose IND-CCA security we needed to establish for our main result. The protocols also rely on a custom
hash-then-IGE mode for its integrity properties, but this mode does not achieve standard AEAD security.
In addition, the MTP-KE3st protocol in its final stage encapsulates MTProto 1.0 messages in an instance
of the MTProto 2.0 secure channel for the purpose of client authentication, yet the MTProto 1.0 protocol
on its own does not immediately provide sufficient integrity for this purpose [JO16]. This demands yet
another bespoke analysis. As further examples of features that induce complexity in our analysis, the
protocols use weak (SHA-1) and truncated hashes, they reuse long-term public keys across protocols,
they reuse symmetric keys in different algorithms for multiple purposes within a single protocol run,
they have short session identifiers, they use a bespoke algorithm for internal key derivation, and they
have complex retry handling to ensure unique session identifiers.

Any one of the above features on its own would present a challenge to completing a formal security
analysis. In combination, they add up to a significant barrier. Yet, the real-world significance of Telegram
and the attendant need to develop an understanding of its security in the service of those who rely on it
necessitates such an analysis. We do not get to choose what and how cryptography is used in Telegram.
Rather, we have to analyse what lies in front of us.

Informally, we show that MTP-KE2st and MTP-KE3st do achieve strong key indistinguishability and
authentication properties under suitable, new assumptions. In particular, we show that both sub-protocols
achieve forward secrecy for session keys (i.e. session keys remain secure even after compromise of server
long-term keys).6 Moreover, both achieve server authentication while MTP-KE3st also achieves a form of
client authentication based on long-term symmetric keys established in a prior run of MTP-KE2st. Neither
sub-protocol attains post-compromise security, but this was likely not a goal of the designers.

To achieve all of this, in Section 3 we first develop a variant of existing multi-stage key exchange (MSKE)
security models. Our model is somewhat tailored to the analysis of MTProto 2.0; see the main body for
details and rationale. As usual, the model gives the adversary access to various oracles for setting up
keys, running sessions with parties, corrupting them to obtain their long-term keys, and revealing their
session keys. A test oracle gives the adversary either real or random session keys; the adversary wins if it
can successfully distinguish which it is given. Trivial wins are ruled out through carefully constructed
predicates operating on session states. Our model is multi-stage, meaning that it caters to protocols that
execute in different stages, with potentially different session key security and authentication properties
being established at each stage. Our model is rich enough to model authentication via public keys (as in
MTP-KE2st) and via long-term symmetric keys (as in MTP-KE3st), as well as handling stage session keys
which may be non-forward secure (in stage 1 of both sub-protocols) or forward secure (in stage 2 of both
sub-protocols).

Using our MSKE model, in Section 4 we give a description of MTProto 2.0’s two sub-protocols MTP-KE2st
and MTP-KE3st, derived both from the Telegram specification and from inspecting code of official

6 Even here we must be circumspect, because session keys can be long-lived, with a client and server typically
running the key exchange protocol to establish a new session key only once every 24 hours. This is in contrast
to secure messengers like Signal that derive a new forward-secure session key for every single message and
brings into question the claim made by Telegram that their protocol offers “Perfect Forward Secrecy”, see https:
//core.telegram.org/api/pfs.

4

https://core.telegram.org/api/pfs
https://core.telegram.org/api/pfs


Telegram implementations. We strike a balance between capturing all the cryptographically relevant
features and making the description too complex to work with. We do not omit any cryptographic
algorithms or features involved, but we do abstract away some of the low-level message encoding
format. We discuss how the on-the-wire protocol differs from our model, and describe a hypothetical
attack against MTProto 2.0 that arose because Telegram servers failed to check the freshness of certain
timestamps. After we disclosed it to Telegram, this behaviour was fixed.

After this, in Section 5 we state our theorems on the MSKE security of MTP-KE2st and MTP-KE3st, with
proofs in Appendix H. The theorems are stated in terms of high-level security properties of the involved
cryptographic components. Our proof that Telegram’s RSA-OAEP+ variant achieves IND-CCA security
can be found in Appendix D. In Appendices E to G, we show how the other high-level properties can be
reduced to low-level properties of the involved primitives. Because of the above-mentioned features of the
protocols, some of the low-level properties we need to rely on for our proofs are unusual or non-standard
in themselves. For example, we must make certain “partially known key” security assumptions about
SHACAL-1, the block cipher underlying SHA-1. We must also rely on restricted forms of second-preimage
resistance for functions built upon SHA-1, and make an assumption that key reuse of these functions is
not detectable by an adversary. We have tried to minimise the number of new assumptions we make; they
are defined in Appendix C. They may eventually be invalidated by cryptanalysis, but we stress that such
progress may not directly yield attacks on Telegram; rather, they are what is needed for our current proofs
to go through. We leave it as a challenge for future work to develop proofs under milder assumptions.
A similar situation can be observed in the analysis of MTProto 2.0’s secure channel in [AMPS22]. We
also rely on two results from prior work that involve asymptotic reductions or statements: a reduction
from the discrete logarithm with short exponent (DLSE) assumption from [KK04] to the “short exponent”
assumption in prime fields, that is used in our main proofs, and a result about the security of the
Even-Mansour cipher from [EM97] that we use to prove a high-level integrity property.

Appendix I highlights specific features of MTProto 2.0 that hindered our analysis, and draws broader
lessons for protocol designers. Our core message there is that modularity of design and breaking depen-
dencies between components is essential in making the task of analysis tractable for cryptographers. So
these features should be primary, not secondary, in any protocol design.

2 Preliminaries

2.1 Notation

Concatenation is denoted by ∥ , the zero byte by 00 and the empty string by ε. Let x be a bit string of
length |x| = ℓ bits. Then x[i] is the i-th bit of x, where 0 ≤ i < ℓ, and x[i : j] := x[i] ∥ . . . ∥ x[j− 1] is the
bit-slice of x from i to j, where 0 ≤ i < j ≤ ℓ. If x is a byte string, i.e. |x| = 8 · n for some n ∈ N, we
use len(x) to refer to the 32-bit big-endian encoding of its byte length n. We use “LSBs” and “MSBs” to
refer to least and most significant bits respectively. Constant byte strings are shown in hexadecimal. Let
Gi:j := {h[i : j] | h ∈ G} for a group G, where h[i : j] is interpreted as a string. We use the shorthand (x)ℓ

to refer to the tuple (x, . . . , x) of length ℓ. We use +̂ as the addition operator over 32-bit words. We
use “find x ∈ L s.t. condition”, which searches the list L for a unique element x satisfying condition and
returns x or makes its calling query return ⊥. We assume that modifying the found element updates L.

The serialisation of an API request req with parameters x, y, . . . using the TL schema [Tel22f] is denoted
by TL(req, x, y, . . .). From now on, when we refer to MTProto, we mean MTProto 2.0 unless indicated
otherwise. In a two-party protocol execution, we denote one party as the initiator, representing the client,
and the other party as the responder, representing the server.

2.2 Standard definitions

Lemma 1 (Fundamental Lemma of Game Playing [BR06]). Let Pr[badG] denote the probability of setting
flag bad in game G. For any two games Gi, Gi+1 that are identical until bad, we have Pr[Gi]− Pr[Gi+1] ≤ β

where β = Pr[badGi ] = Pr[badGi+1 ].

5



Definition 1 (Short exponent problem [KK04]). Let G be a group of prime order q with a generator g. Let n =
|q| and c be such that log(n) < c < n. Let D0 = {(g, gx) | x ←$ {0, ..., q− 1}}, Dn−c = {(g, gz) | z ← 2n−c ·
u, u←$ {0, 1}c} be distributions. Let S-EXP be the problem of distinguishing between D0 and Dn−c. The advantage
of an adversary D in breaking S-EXP is defined as AdvS-EXP

G,q (D) := Pr[D(g, W) = 1 | (g, W)←$ Dn−c ] −
Pr[D(g, W) = 1 | (g, W)←$ D0 ].

In [KK04, Theorem 1], the discrete logarithm with short exponent (DLSE) problem is reduced to the
S-EXP problem.

3 Model

Since no model from previous work allows for expressing MTProto’s key exchange fully, we define
a new model for the protocol. In doing this, we take inspiration from the multi-stage key exchange
(MSKE) models of [FG14, FG17, DFGS21, DDGJ22], which are based on the Bellare-Rogaway family of
models [BR94, BFWW11]. We follow [DDGJ22] in using code-based definitions and soundness predicates.

The cited models capture some of the properties of MTProto, e.g. the separation of authentication guaran-
tees between stages, the modelling of internal and external session keys, and the usage of contributive
identifiers for honest but unauthenticated partners. We omit those properties that are not relevant for
MTProto, e.g. the replayability that was of concern for 0-RTT in TLS 1.3. We further augment the model
to allow for both asymmetric and symmetric secrets to be used in different stages of the same protocol
run. Note that since the session keys in the stages of MTProto key exchange are not key independent,
we cannot implicitly rely on the composition guarantees of the existing MSKE models [Gün18]. Finally,
since our aim is to give a security analysis that is as close to the complex reality of MTProto as possible,
rather than a fully general treatment, we simplify the model by restricting it in several ways, e.g. we
allow for responder-only and mutual but not initiator-only authentication, and we consider corruptions
of asymmetric secrets only. We do not model the possibility of side-channel attacks.

3.1 Parameters and syntax

Following [Gün18, DFGS21], we use a vector of properties to parametrise the definition of our model. We
use the vector (M,TYPE,AUTH,TS,USE,FS,KD,DIST), where:

– M ∈N is the number of stages.

– TYPE ⊆ {pub, sym} denotes the supported types of long-term secrets (public-key keypairs, symmetric
keys). We assume that TYPE always includes pub.

– AUTH ∈ {none, R-only, mutual}M defines the expected authentication property of each stage (unau-
thenticated, responder-only, mutual authentication).

– TS ∈ {testable, auth-only}M defines for each stage whether its session keys can be tested directly.
We introduce this parameter to enable the handling of stages that provide authentication but do not
meet key indistinguishability.

– USE ∈ {internal, external, none}M defines for each stage whether its session key is used within
the key exchange protocol itself or only outside of it. Internal stages require adjustments to maintain
consistency of session keys, to avoid trivial attacks. We use none for stages that are auth-only in TS.

– FS = i where i ∈ {1, . . . ,M} ∪ {∞} defines the stage from which forward secrecy should apply with
respect to the corruption of the public-key keypairs.7 We use ∞ to denote no forward secrecy.

7 We do not model corruption with respect to the symmetric keys as MTProto only uses them for authentication (see
Section 3.2).

6



– KD ∈ {independent, dependent} defines if the protocol is key dependent, i.e. if at some stage i the
session key is derived using the session key of the previous stage i− 1 (so revealing the session key of
stage i− 1 before the stage i has finished running would lead to trivial attacks, as in e.g. QUIC [Gün18]).
Though we will only use KD = dependent, we surface this as an explicit parameter to make it clear
that security for MTProto is only possible in this weaker model.

– DIST = (K1
test, . . . ,KM

test) defines the session key distributions for each stage.

Though the above properties allow for different combinations of authentication types, our model assumes
that responder authentication is via public keys and initiator authentication is via symmetric keys. Table 1
in Section 4 shows the properties we use in our analysis of MTProto.

To define the model, we use the following syntax:

– U is the set of user identities in the protocol.

– ⋆ represents an unknown user identity.

– Urole is the set of users along with their intended roles. Each element of Urole is of the form U =
(user, role), where user ∈ U and role ∈ {I, R}.

– LS is the list of sessions s, each of the form

s = (label, uid, vid, kid, stage, stexec, sid, cid, kcid, sskey, stsskey, stKE, sttest, stpause),

where:

• label = (U, V, j) ∈ U × (U ∪ {⋆})×N is a unique administrative label to mark that this is the j-th
session owned by U with the intended partner V.

• uid ∈ Urole is the owner of the session.

• vid ∈ Urole ∪{(⋆, I)} is the intended partner of the session, allowing for the identity of the initiator
to be unspecified.

• kid ∈ {0, 1}∗ ∪ {⊥} identifies the symmetric key used (if any).

• stage ∈ {0, . . . ,M} is the latest accepted stage, default value: 0.

• stexec ∈ {runningi | 0 ≤ i ≤ M} ∪ {acceptedi | 0 < i ≤ M} ∪ {rejectedi | 0 < i ≤ M} is the
state of the execution, default value: running0.

• sid ∈ ({0, 1}∗ ∪{⊥})M defines the session identifier agreed upon acceptance in each stage, default
value for each item: ⊥.

• cid ∈ ({0, 1}∗ ∪ {⊥})M defines the contributive identifier of each stage, which may be set several
times before acceptance, default value for each item: ⊥.

• kcid ∈ ({0, 1}∗ ∪ {⊥})M defines the key confirmation identifier that is set before acceptance in
each stage, default value for each item: ⊥.

• sskey ∈ ({0, 1}∗ ∪ {⊥})M defines the session key output by each stage upon acceptance, default
value for each item: ⊥.

• stsskey ∈ {fresh, revealed}M is the state of the session key in each stage, default value for each
item: fresh.

• stKE is the session state for the session, default value: ε.

• sttest ∈ {false, true}M indicates whether the session was tested by the adversary in each stage,
default value for each item: false.

• stpause ∈ {false, true} tracks if the execution of the session was paused after one stage accepted
and before moving to the next stage, default value: false.

7



– LK is the list of long-term secrets of the form k = (type, id, key, stkey), where:

• type ∈ {pub, sym} denotes key type (public-key keypair or a symmetric key).

• If type = pub, then id ∈ Urole is the owner of the keypair. If type = sym, then id is a unique
identifier of the form (V, kid) where V ∈ Urole and kid ∈ {0, 1}∗.

• key = (pk, sk) if type = pub, and key = key if type = sym.

• stkey ∈ {honest, corrupted} is the state of the key/keypair, default: honest.

– btest ∈ {0, 1} is the random challenge bit generated by the game.

– lost ∈ {false, true} indicates whether the adversary has lost the game.

– Cpub ⊆ Urole is the set of users whose private keys sk have been corrupted.

For s ∈ LS, we use e.g. s.uid to denote the value of uid in the s tuple, and uid← s.uid to distinguish tuple
identifiers from variables. We use e.g. s.sid.i to refer to the value of sid for the i-th stage. We assume that
Urole is generated externally (formally, the game takes Urole as input before initialising; see Fig. 3). During
game setup, LS is initialised as an empty list and LK is populated to contain newly-generated public-key
keypairs for all V ∈ Urole such that V.role = R (assuming at most one keypair for each V), while the
symmetric keys can be generated during the game by the adversary using the NEWSECRET query.

Key exchange protocol. We define KE as a triple of algorithms KE.KGen, KE.Init and KE.Run. More precisely,
we use KE.KGenpub and KE.KGensym to refer to the long-term key generation algorithms for the public-
key keypairs and symmetric keys, respectively. Due to quirks of MTProto, KE.KGensym takes a user
identity as input. Let s ∈ LS and m ∈ {0, 1}∗. KE.Init(s) initiates a session s such that s.uid.role = I

and s.stexec = running0 (responder sessions are initiated when they receive the first protocol message).
KE.Run(s, m) then executes the protocol for the session s, processing the received protocol message m. We
use KE.Run(s) to express continuing a paused execution (i.e. one that is still processing some previously
received m; we explain this mechanism in more detail in the next subsection). We assume that whenever
KE sets s.stexec = acceptedi for some i, it sets s.sid.i, s.sskey.i to non-⊥ values and s.stage to i. Note that
KE itself is responsible for setting its session’s s.kid to the id of the used symmetric key, as well as for
setting its session’s s.vid if it was previously unset.

In addition, we use the shorthand

Running(s) := ∃i ∈ {0, . . . ,M} : s.stexec = runningi

Accepted(s) := ∃i ∈ {1, . . . ,M} : s.stexec = acceptedi

Rejected(s) := ∃i ∈ {1, . . . ,M} : s.stexec = rejectedi

to denote that the session s ∈ LS is running/accepted/rejected in some stage.

Partnering. We follow a standard definition for partnered sessions from [BFWW11] that depends upon a
jointly-agreed session identifier.

Definition 2 (Partnering). Sessions s, s′ ∈ LS such that s ̸= s′ are defined to be partnered if and only if
s.sid = s′.sid ̸= ⊥. We use the following abstractions:

∃Partner(s, i, rule) := ∃s′ ∈ LS : (s ̸= s′ ∧ s.sid.i = s′.sid.i ̸= ⊥∧ rule(s′))

Partners(s, i, rule) := {s′ | s′ ∈ LS ∧ s.sid.i = s′.sid.i ̸= ⊥∧ rule(s′)}
∃Partners(rule) := ∃s, s′ ∈ LS, i ∈ {1, . . . ,M} :

(s ̸= s′ ∧ s.sid.i = s′.sid.i ̸= ⊥∧ rule(s, s′, i)).

8



where rule is an additional condition for each specific context. If this is not needed, we define:

∃Partner(s, i) := ∃Partner(s, i, true)
Partners(s, i) := Partners(s, i, true).

Note that s ∈ Partners(s, i) is always true by definition. We can thus define

∄Partner(s, i) := |Partners(s, i)| = 1.

3.2 Adversarial queries

In our games, an adversary A interacts with the protocol using the oracle queries given in Figs. 1 to 2.
Below, we describe the queries in more detail:

NEWSECRET(U, V) // U, V ∈ Urole, U.role = I, V.role = R

if sym ∈ TYPE :
(kid, key)←$ KE.KGensym(V)

append (sym, (V, kid), key, honest) to LK
for each s ∈ LS s.t. s.uid = U ∧ s.kid = ⊥ : s.stKE ← (s.stKE, (V, kid, key))
for each s ∈ LS s.t. s.uid = V ∧ s.kid = ⊥ : s.stKE ← (s.stKE, (U, kid, key))
return kid

return ⊥

Fig. 1. NEWSECRET query for A.

NEWSECRET(U, V) is only relevant for protocols that use symmetric keys as long-term secrets. It generates
a new symmetric key shared between an initiator U and a responder V, and associates it to a globally-
unique key identifier. Due to quirks of MTProto, this key identifier consists of two parts, the identity of
the responder V and a key identifier kid that is only required to be unique with respect to a given V and
which is generated using KE.KGensym.8 Amust call NEWSECRET before the first stage that requires the
use of symmetric keys.

NEWSESSION(U, V) creates a new session with a unique label that is owned by the user U and has the
intended partner V. If the identity of the intended partner is unknown, we set V = (⋆, I).9 The helper
function GetPubKeys(U, V) ensures that the correct keys are included as part of the initial state of the key
exchange protocol: a session owned by a responder obtains its own keypair, while a session owned by an
initiator gets the public key of its intended partner.

CORRUPT(U) adds the user U to the set of corrupted users and reveals the user’s long-term public-key
keypair to A. We model forward secrecy but not post-compromise security. To capture the effect of
corruption in the key-dependent setting we use the helper function KDReveal, which is also used by the
REVEAL query below. Note that the adversary is not allowed to compromise the session state itself or its
randomness as, similar to TLS, MTProto is not expected to be secure in that scenario. We do not model
corruption of long-term symmetric keys because in MTProto, they are only used for authentication.10

REVEAL(label, i) allows A to reveal the session key for the accepted and testable stage i of the session
with label label. In the case of key dependence, KDReveal also marks all future stages of the session and
its partners as revealed.

8 This is true to practice: a server is expected to maintain a mapping from key identifiers to user identities and the
corresponding keys.

9 We only allow unknown initiators, as MTProto clients can always identify the servers.
10 Corrupting such a key before the relevant stage accepts would have to be excluded due to trivial wins, but

corrupting it afterwards could not enable the adversary to learn anything about past session keys.

9



NEWSESSION(U, V)

// U ∈ Urole, V ∈ Urole ∪ {(⋆, I)}
pbk← GetPubKeys(U, V)

j← max ({j′ | j′ ∈N∧ s ∈ LS

∧s.label = (U.user, V.user, j′)})
label← (U.user, V.user, j + 1) ; kid← ⊥
i← 0 ; stexec ← running0 ; stKE ← pbk ; sid← (⊥)M

cid← (⊥)M ; kcid← (⊥)M ; sskey← (⊥)M

stsskey ← (fresh)M ; sttest ← (false)M ; stpause ← false

append (label, U, V, kid, i, stexec, sid, cid, kcid,

sskey, stsskey , stKE, sttest, stpause) to LS

return label

GetPubKeys(U, V)

if U.role = R : uid← U else : uid← V
kpub ← find k ∈ LK s.t. k.type = pub∧ k.id = uid

(pk, sk)← kpub.key

if U.role = R : pbk← (pk, sk) else : pbk← pk

return pbk

CORRUPT(U)

// U ∈ Urole
kpub ← find k ∈ LK s.t. k.type = pub∧ k.id = U

kpub.stkey ← corrupted

Cpub ← Cpub ∪ {U}
S ← {s | s ∈ LS ∧ (s.uid = U ∨ s.vid = U)}
for each s ∈ S : for each i ∈ {1, . . . ,M} :

if (AUTH.i = R-only) ∧ ((i < FS) ∨ (i > s.stage)) :

s.stsskey .i← revealed ; KDReveal(s, i)

return kpub.key

REVEAL(label, i)
// i ∈ {1, . . . ,M}
s← find s ∈ LS s.t. s.label = label
if TS.i ̸= testable∨ s.stage < i : return ⊥
s.stsskey .i← revealed

S ← Partners(s, i)

for each s′ ∈ S : KDReveal(s′ , i)
return s.sskey.i

KDReveal(s, i)
// s ∈ LS, i ∈ {1, . . . ,M}
if KD = dependent∧ s.stage ≤ i :

for each j ∈ {i + 1, . . . ,M} : s.stsskey .j← revealed

SEND(label, m)

s← find s ∈ LS s.t. s.label = label
if m = init∧ s.uid.role = I∧ s.stexec = running0 :

mresp ← KE.Init(s)

elseif Running(s) ∨Accepted(s) :

mresp ← Handle(KE.Run(s, m))

else : return ⊥
return mresp, s.stexec

Handle(KE.Run(s, m))

if m = continue∧ s.stpause = true :

// continue execution of previous run

mresp ← KE.Run(s) ; s.stpause ← false

else : run KE.Run(s, m) until

Accepted(s) or mresp ← KE.Run(s, m)

// pause execution when s accepts

if Accepted(s) :

i← s.stage

if (AUTH.i = R-only∧ (s.uid ∈ Cpub ∨ s.vid ∈ Cpub))
∨ ∃Partner(s, i, stsskey .i = revealed) :

s.stsskey .i← revealed ; KDReveal(s, i)

S ← Partners(s, i, sttest.i = true)

if S ̸= ∅ :
s.sttest.i← true

for each s′ ∈ S :
if USE.i = internal : s.sskey.i← s′ .sskey.i

s.stpause ← true

return paused

return mresp

TEST(label, i)
s← find s ∈ LS s.t. s.label = label
if TS.i ̸= testable∨ s.stexec ̸= acceptedi ∨ s.sttest.i = true :

return ⊥
if USE.i = internal∧ ∃Partner(s, i, stexec ̸= acceptedi) :

// after key was used internally by a partner

lost← true

if AUTH.i = R-only∧ s.uid.role = R

∧ (∄s′ ∈ LS : s′ ̸= s∧ s′ .cid.i = s.cid.i) :

// a responder w/o honest contributive partner

lost← true

S ← Partners(s, i, stexec = acceptedi)

for each s′ ∈ S :
s′ .sttest.i← true ; KDReveal(s′ , i)

if btest = 0 :

sskey←$ Ki
test

if USE.i = internal :
for each s′ ∈ S : s′ .sskey.i← sskey

else : sskey← s.sskey.i

return sskey

Fig. 2. NEWSESSION, CORRUPT, REVEAL, SEND and TEST queries for A.

10



SEND(label, m) lets A pass a network message m to the running session with label label. If m is the special
message init, it initiates a run of the key exchange protocol with KE.Init. Otherwise, it continues running
the protocol with KE.Run which gets the session and the message m as input, and outputs a response
message mresp which is given to A along with the updated execution state of the session. The helper
function Handle acts as a wrapper on the execution of KE.Run, monitoring any changes to the session’s
state and pausing the execution when the protocol accepts. This is to allow A to test an accepted session
key before the protocol potentially moves on to another stage: A is given the special message paused

as output, and it can resume the execution by calling SEND(label, continue). Handle performs a number
of checks upon acceptance. If it is executing a responder-only authenticated stage and the intended
partner is corrupted, or if a partnered session key was previously revealed, the session key of the current
session (as well as future sessions in the case of key dependence) is also marked as revealed. Finally, if a
partnered session was previously tested, the current session is marked as tested and if in addition the
current session key is internal, it is set to match the partnered session key to avoid trivial distinguishing
attacks.

TEST(label, i) allows A to test any session which has just accepted stage i, where this stage was not
previously marked as tested. Stages not marked as testable in TS cannot be queried, but the adversary
may still win if it can break authentication at those stages. There are two conditions which will set the
lost flag to true, thus preventing trivial attacks: first, if the key is internal and the tested session has a
partner that has moved on to the next stage, and second, if the tested protocol stage is responder-only
authenticated and the tested session is a responder session without an honest contributive partner. TEST
outputs either a randomly sampled key or the real session key based on the value of the challenge bit
btest. If btest = 0 and the session key is internal, the session key of the current session as well as its
partnered sessions is replaced with the random key for consistency. Finally, the partnered sessions are
also marked as tested. In the case of key dependence, all future stages of the partnered sessions are
marked as revealed.11

3.3 Security game

Our multi-stage key exchange security game draws inspiration from [BFWW11, DFGS21]. Note that
instead of defining a separate game for soundness of session identifiers (referred to as Match-security in
other works), we include a soundness predicate within the key indistinguishability game as in [DDGJ22].

Definition 3. Let GMulti-Stage
KE,Urole,A be as given in Figs. 1 to 4. The advantage of adversary A in breaking the

Multi-Stage-security of the key exchange protocol KE with the set of users Urole is defined as AdvMulti-Stage
KE,Urole (A) :=

2 · Pr[GMulti-Stage
KE,Urole,A ]− 1.

Handling authentication-only stages. Following the terminology of [FGSW16, DFW20], we define
predicates that specify when the adversary wins by breaking implicit authentication or key confirmation.
We define the predicates as winning conditions rather than specifying the desired security goals. Our
definitions differ from those of [FGSW16, DFW20] in three ways. First, we do not include the case where
partnered sessions derive a different key as a win, since this is already modelled as part of the soundness
predicate. Second, we restrict our implicit authentication predicate to fresh sessions, since MTProto is not
secure against key-compromise impersonation attacks.12 Third, our freshness predicate speaks about
both the target session and its partners, but expresses the same idea – the sessions should not have been
corrupted prior to acceptance.

11 This latter step is necessary to prevent trivial attacks where the adversary uses the tested session key to perform a
MitM attack on the following stage. The original key-dependent MSKE model of [FG14, Gün18] is missing this
step.

12 An attacker can always impersonate clients to a corrupted server in stage 3, though such a scenario is more
contrived than the setting of TLS where malicious client certificates can be installed [HGFS15].

11



GMulti-Stage
KE,Urole,A
LK,Kpub ← Init(Urole)
LS ← [] ; Cpub ← ∅ ; lost← false

btest ←$ {0, 1}
b′test ← ANEWSECRET,...,TEST(Kpub)

if ¬Sound : return 1
if ¬Auth : return 1
if (∃s, s′ ∈ LS, i ∈ {1, . . . ,M} :

s.sid.i = s′.sid.i
∧ s.stsskey.i = revealed

∧ s′.sttest.i = true) :
lost← true

return b′test = btest ∧ lost = false

Init(Urole)
LK ← [] ; Kpub ← ∅
for each V ∈ Urole s.t. V.role = R :
(pk, sk)←$ KE.KGenpub()

append (pub, V, (pk, sk), honest) to LK
Kpub ← Kpub ∪ {(V, pk)}

return LK,Kpub

Fig. 3. Game for Multi-Stage-security.

The authentication predicate Auth is only used in stages that are not testable.13 In the following, let
j ∈ {1, . . . ,M} be such that TS.j = auth-only; we will have j = 3 for the three-stage MTProto
protocol. In order to simplify the notation, we assume the predicates below have access to LS. Let
LRS := {s ∈ LS | s.uid.role = R}. We first introduce a freshness predicate that defines what makes a win
permissible, avoiding trivial attacks:14

Fresh(j, s) := ∀s′ ∈ LS : s.sid.j = s′.sid.j ̸= ⊥ =⇒ s′.stsskey.j = fresh

Then we define:

¬ImplicitAuth(j) := ∃s, s′ ∈ LS : (Fresh(j, s) ∧ s.sskey.j = s′.sskey.j∧ s.vid ̸= s′.uid)

¬KCAlmost(j) := ∃s ∈ LRS : (Fresh(j, s) ∧ s.stage = j∧ ∄s′ ∈ LS :

(s′ ̸= s∧ s′.kcid.j = s.kcid.j ̸= ⊥))

We only define almost-full key confirmation, as this is the strongest possible model for MTProto: as we
will see, clients cannot get key confirmation from stage 3 at all despite receiving the last protocol message
because the message they get back does not depend on the long-term shared symmetric key.

4 Telegram protocols

In this section, we define two MTProto key exchange protocols, MTP-KE2st and MTP-KE3st, each of
which instantiates KE in the model described in Section 3. In Section 4.1, we give a high-level overview.
Then, Section 4.2 introduces some of the custom primitives the protocols use. Sections 4.3 and 4.4 give a
formal definition of MTP-KE2st and MTP-KE3st. Finally, in Section 4.5 we summarise the key differences
between our formalisation and Telegram’s implementation. For a high-level display of the protocols,
readers may consult Fig. 10.

13 We do not define the predicates for all stages as the two-stage protocol of MTProto, which only authenticates the
responder, likely does not provide key confirmation.

14 The effects of public-key keypair corruptions are captured via checking the session key state, since session keys are
marked as revealed if and only if the public-key keypair is corrupted prior to the end of the stage authenticated by
it.

12



Sound

if ∃s, s′, s′′ ∈ LS, i ∈ {1, . . . ,M} : (
∣∣{s, s′, s′′}

∣∣ = 3∧ s.sid.i = s′.sid.i = s′′.sid.i ̸= ⊥) :
return false // at most two sessions can be partnered

if ∃Partners(s.uid.role = s′.uid.role) :
return false // partners can’t have the same role

if ∃s, s′ ∈ LS, i, j ∈ {1, . . . ,M} : (i ̸= j∧ s.sid.i = s′.sid.j) :
return false // session ids of different stages can’t match

if ∃Partners(s.sskey.i ̸= s′.sskey.i∧ s.stexec.i = s′.stexec.i = acceptedi) :
return false // partners can’t have different keys

if ∃Partners(s.cid.i ̸= s′.cid.i∨ s.cid.i = s′.cid.i = ⊥) :
return false // partners can’t have different or unset contrib. ids

if pub ∈ TYPE∧ ∃Partners(AUTH.i = R-only∧ s.uid.role = I∧ s′.uid.role = R∧ s.vid ̸= s′.uid) :
return false // responder-only auth. with public keys

if sym ∈ TYPE∧ ∃Partners(AUTH.i = mutual∧ s.kid ̸= s′.kid) :
return false // mutual auth. with symmetric keys

return true

Auth

for each j ∈ {i | i ∈ {1, . . . ,M} ∧TS.i = auth-only} :
if ¬ImplicitAuth(j) ∨ ¬KCAlmost(j) : return false

return true

Fig. 4. Soundness and authentication predicates.

4.1 Overview

When a user wants to set up a new Telegram account, the app initiates two independent runs of a key
exchange protocol in the background: first, to agree on a long-term shared key ak, referred to as auth key,
and then to agree on a short-term shared key akt, referred to as temporary auth key. Then, akt is used to
establish a secure channel, in which the first message is a special “binding” ciphertext [Tel22b], meant to
bind the temporary key akt to the long-term key ak. Each ak may only be bound to a single akt at a time.
Afterwards, the recently-established channel is used to transmit user registration messages such as a
verification code or a password (if password-based 2FA is enabled [Tel22g]).

The use of the temporary auth key akt is meant to provide forward secrecy and is enabled by default
in official clients, changing not with every new session but on a daily basis (each akt comes with an
expiration timestamp). Once the key expires or shortly before, the client initiates a run of the key exchange
protocol to agree on a new temporary key and binds it to their long-term auth key ak as described above.
We assume that each user runs the Telegram client on a single device, establishing sessions with one or
more Telegram servers.15

Let MTP-CH denote Telegram’s MTProto 2.0 secure channel as formalised in [AMPS22]. Let MTP-KE2st
denote the initial key exchange protocol and MTP-KE3st its version for establishing a temporary key. As
we will see, both key exchange protocols naturally lend themselves to a multi-stage model: both start
by agreeing on an ephemeral key (stage 1), which is then used to encrypt and authenticate the protocol
messages that follow (stage 2). Then, MTP-KE3st includes an additional exchange of messages intended
to provide client authentication (stage 3).

15 This is, of course, a simplifying assumption. There is a long-term auth key and a temporary auth key for each
device-datacenter pair. For instance, the Android client can maintain a connection with up to 5 datacenters, and
each will be associated with different keys. Similarly, if a user uses Telegram on multiple devices, each device will
establish a different set of auth keys.

13



4.2 Custom primitives

Here we define those primitives used by the key exchange protocols which are custom-made or di-
verge from standard practice.16 For definitions of standard functions used by these primitives, such as
AES-256-IGE and SHACAL-1, see [AMPS23, Section 2.2].

TOAEP+: custom RSA padding format. In response to the key exchange attack described in [AMPS22],
Telegram developers modified the protocol employed by MTProto 2.0 [Tel22c]. Instead of using textbook
RSA with a custom padding scheme, they implemented a custom variant of RSA-OAEP+ [Sho02] (see
Appendix D.3), which we will refer to as TOAEP+. We give pseudocode for this construction in Fig. 5. In
Appendix D, we give a tight proof that TOAEP+ achieves IND-CCA-security under the standard RSA
one-wayness assumption.

TOAEP+.KGen()

1 : (N, p, q, e, d)←$ RSA.KGen() ; pk← (N, e) ; sk← (N, d) ; return (pk, sk)

TOAEP+.Enc(pk, m)

1 : (N, e)← pk ; K←$ {0, 1}256

2 : pad←$ {0, 1}1536−|m|

3 : mpadded ← m ∥ pad

4 : h← SHA-256(K ∥ mpadded)

5 : pige ← reverse(mpadded) ∥ h

6 : cige ← AES-256-IGE.Enc(K, 0256, pige)

7 : r ← SHA-256(cige)⊕ K

8 : prsa ← r ∥ cige
9 : z← prsa // Parse prsa as an integer.

10 : if z ̸∈ ZN : goto line 1
11 : crsa ← ze mod N
12 : return crsa

TOAEP+.Dec(sk, crsa)

(N, d)← sk

z← (crsa)d mod N
prsa ← z // Parse z as a 2048-bit string.

r ← prsa[0 : 256]
cige ← prsa[256 : 2048]

K← SHA-256(cige)⊕ r

pige ← AES-256-IGE.Dec(K, 0256, cige)

mpadded ← reverse(pige[0 : 1536])

h← pige[1536 : 1792]

if h ̸= SHA-256(K ∥ mpadded) : return ⊥
m← RemovePadding(mpadded)

return m

Fig. 5. TOAEP+: Telegram’s variant of OAEP+. Here reverse(x) returns x in reverse byte order and RemovePadding
removes padding; N is always a 2048-bit integer.

SKDF: custom key derivation function. To derive ephemeral keys used as part of the key exchange
protocol, MTProto makes use of a custom function based on SHA-1, which we will refer to as SKDF.
Formally, SKDF.Ev : {0, 1}256 × {0, 1}128 → {0, 1}512 returns y ← SKDF.Ev(k, x) for key k and input x
where

y = SHA-1(k ∥ x) ∥ SHA-1(x ∥ k) ∥ SHA-1(k ∥ k) ∥ k[0 : 32].

Notably, the function directly outputs the first 32 bits of its key, severely curtailing the security properties
it can be shown to achieve in general. In this work, we analyse it in conjunction with HtE-SE and NH,
defined below.

HtE-SE: custom Hash-then-Encrypt scheme. Figure 6 defines the custom symmetric encryption scheme
HtE-SE that encrypts some of the key exchange messages in the second stage. Note that SHA-1 is not

16 Note that the abstractions of function calls into named primitives are largely our own; Telegram documentation
and code does not use such abstractions.

14



computed over the padding, so the length of the padding is not known immediately upon decryption.
The Android client gets around this using a trial and error approach [Tel22a]. This is reflected in Fig. 6.
Though HtE-SE is used for encryption, the only goal it needs to meet is integrity, as it is used to protect
Diffie-Hellman shares. In Appendix F, we show that HtE-SE meets a suitable notion of INT-PTXT security.
Note that IND-CCA security (and thus INT-CTXT) is not achievable for HtE-SE.

HtE-SE.Enc(kse, m) // |kse| = 512

k← kse[0 : 256] ; iv← kse[256 : 512]
ℓ← (128− (160 + |m|)) mod 128

r←$ {0, 1}ℓ // pad to block length

p← SHA-1(m) ∥ m ∥ r
c← AES-256-IGE.Enc(k, iv, p)
return c

HtE-SE.Dec(kse, c) // |kse| = 512

k← kse[0 : 256] ; iv← kse[256 : 512]
p← AES-256-IGE.Dec(k, iv, c)
for i = 0, . . . , 15 : // bytes of padding

m← p[160 : |p| − i · 8]
if SHA-1(m) = p[0 : 160] :

return m
return ⊥

Fig. 6. Construction of symmetric encryption scheme HtE-SE.

NH: custom confirmation hash. To signal key confirmation or the necessity of a retry in the protocol,
MTProto uses a custom stateful hash algorithm based on SHA-1 which we will refer to as NH. For given
session state st, NHst : {0, 1}256 × {0, 1}64 → {0, 1}128 returns h← NHst.Ev(nn, ax) for key nn and input ax
where

h = SHA-1(nn ∥ 0i ∥ ax)[32 : 160],

with i = 1 if the state st indicates an accept and i = 2 a retry. To ease exposition, we may also surface i as
an explicit input to NH.Ev.

MTP-CH: MTProto 2.0 channel. MTProto key exchange actually encapsulates some of its messages
within the newly established MTProto 2.0 channel MTP-CH. Since these messages have a specific format
distinct from normal use of the channel and they only occur directly after completing key exchange, we
model it as a separate stage of the key exchange protocol. We use the formalisation of [AMPS22] with
small syntactical changes. Recall that MTP-ME is the MTProto message encoding scheme. We modify
MTP-CH.Init to take the keys and server_salt, a value computed during key exchange, as input as shown
in Fig. 7 (in turn, MTP-ME.Init must take server_salt as input, and MTP-ME.Encode must set salt using the
provided state).

MTP-CH.Init((kkt, mkt), (aidt, server_salt))

kk← kkt ; mk← mkt ; auth_key_id← aidt

(kkI , kkR)← ϕMTP-KDF(kk); (mkI , mkR)← ϕMTP-MAC(mk)
keyI ← (kkI , mkI ); keyR ← (kkR, mkR)

(stME,I , stME,R)← MTP-ME.Init(server_salt)

stI ← (auth_key_id, keyI , keyR, stME,I ); stR ← (auth_key_id, keyR, keyI , stME,R)

return (stI , stR)

Fig. 7. Modified channel initialisation of MTP-CH with highlighted changes.

15



CHv1: MTProto 1.0 encryption. Within MTP-CH, MTProto key exchange also uses the deprecated 1.0
channel protocol to provide client authentication. However, since it is only used to encrypt a single
message of a particular type, we do not model it as a full-fledged channel protocol.17 We refer to this
(restricted) encryption scheme as CHv1, shown in Fig. 8 together with its constituent functions Hv1, KDFv1
and SEv1. In this definition, we assume that it is only ever used with a single request, which means that
the length as well as the format of the message are fixed; parts of the plaintext itself are also constant,
fixed values. In Appendix G, we show the scheme achieves a weak form of plaintext integrity.

The definition of KDFv1 makes a simplifying assumption, similar to the one made in [AMPS22] for the
MTProto 2.0 channel, in that it does not interleave smaller bit ranges of the SHA-1 outputs A, B, C, D but
uses them in order. This does not impact security.18 Further, the definition of Decode involves explicit
checks on all fixed parts of the plaintext. In practice, some of these are implicit in the way the server
parses the request (e.g. a message with a different header would eventually cause an error). The condition
p[192 : 224] ̸= 00000000 may not be checked in practice by the server, but we assume for our analysis
that it is (see Section 4.5).

4.3 Parameters

First, for both protocols we define a number of protocol-specific parameters:

– ridmax ∈ N defines the maximum number of retries allowed in each session. A retry occurs if the
protocol state of a given party is rewound, enabling it to send/receive a protocol message of the
same type as it had already sent/received before; both MTProto protocols exhibit this behaviour.
Concretely, one could for example set ridmax = 32.19

– We fix the group parameters for Diffie-Hellman according to MTProto: G denotes a cyclic group
of prime order q generated by g ∈ Z∗p where p is a prime of the form p = 2q + 1.20 Though these
parameters appear to be fixed in practice, they are not fixed in code – it is the server’s responsibility
to provide the parameters during the protocol, and the client’s responsibility to check them, as we
describe later.

Second, for each protocol we define in Table 1 the model parameters according to the syntax introduced
in Section 3.1. We explain the session key distributions defined in the table as follows. For both protocols,
K1

test = {0, 1}256. For MTP-KE2st, K2
test = G0:1024 := {gc[0 : 1024] | gc ∈ G}, i.e. it denotes the set of

strings formed by taking the 1024 MSBs of elements of G. For MTP-KE3st, K2
test is almost the same but

omits 32 bits compared to MTP-KE2st. Finally, for MTP-KE3st, K3
test = K2

test, since the third stage is not
testable.

The definition of K2
test is clearly nonstandard for two reasons. First, we do not consider a uniform

distribution of strings, but rather one that includes (parts of) elements of G. This is because MTProto
uses these bits of the agreed DH values directly as key material, and so this definition represents the
best possible security that can be achieved by MTProto.21 Second, we consider a distribution with
specific bit ranges of elements of G. Formally, this is a restriction introduced by our model (i.e. MTProto
documentation has no such view of session keys), however it reflects how the agreed DH values are used
in practice, since not all bits are used as key material in the subsequent channel protocols. Making this
restriction allows us to reason about the key exchange while avoiding trivial key confirmation attacks
(see Appendix B.2).

17 Previous attacks on MTProto 1.0 rule out the possibility of a general proof.
18 In reality, MTProto 1.0 uses k = A[0 : 64] ∥ B[64 : 160] ∥ C[32 : 128] and iv = A[64 : 160] ∥ B[0 : 64] ∥ C[128 :

160] ∥ D[0 : 64].
19 We justify this in Section 4.5.
20 The prime p used by MTProto is shown in https://core.telegram.org/mtproto/auth_key.
21 If we defined K2

test := {0, 1}1024, there would be a trivial distinguishing attack between random 1024-bit strings
and the first half of the MSBs of elements of G. Given the fixed p that MTProto is using, when sampling a random
1024-bit string the probability of hitting a value r such that p < r · 21024 < 22048 is around 0.22.

16

https://core.telegram.org/mtproto/auth_key


CHv1.Enc(akv1, (mid, m))

// |akv1| = 1024, |mid| = 64, |m| = 288

r←$ {0, 1}128

msk← Hv1.Ev(r, mid, m)

k, iv← KDFv1.Ev(akv1, msk)
c← SEv1.Enc(k, iv, (r, mid, m))

return msk, c

CHv1.Dec(akv1, (msk, c))
// |akv1| = 1024, |msk| = 128, |c| = 640

k, iv← KDFv1.Ev(akv1, msk)
out← SEv1.Dec(k, iv, c)
if out = ⊥ : return ⊥
r, mid, m← out

msk′ ← Hv1.Ev(r, mid, m)

if msk′ ̸= msk : return ⊥
return mid, m

Hv1.Ev(r, mid, m) // |r| = 128, |mid| = 64, |m| = 288

p← Encode(r, mid, m) ; msk← SHA-1(p)[32 : 160] ; return msk

KDFv1.Ev(akv1, msk) // |akv1| = 1024, |msk| = 128

A← SHA-1(msk ∥ akv1[0 : 256])
B← SHA-1(akv1[256 : 384] ∥ msk ∥ akv1[384 : 512])
C ← SHA-1(akv1[512 : 768] ∥ msk)
D ← SHA-1(msk ∥ akv1[768 : 1024])
k ∥ iv← A ∥ B ∥ C[32 : 160] ∥ D[0 : 64] // |k| = |iv| = 256

return k, iv

SEv1.Enc(k, iv, (r, mid, m))

// |r| = 128, |mid| = 64, |m| = 288

p← Encode(r, mid, m)

rpad ←$ {0, 1}64 ; ppad ← p ∥ rpad
c← AES-256-IGE.Enc(k, iv, ppad)
return c

SEv1.Dec(k, iv, c) // |c| = 640

ppad ← AES-256-IGE.Dec(k, iv, c)

p← ppad[0 : 576] ; out← Decode(p)

if out = ⊥ : return ⊥
r, mid, m← out
return r, mid, m

Encode(r, mid, m) // |r| = 128, |mid| = 64, |m| = 288

mTL ← 65f7a375 ∥ m // mTL = TL(req, m)

p← r ∥ mid ∥ 00000000 ∥ len(mTL) ∥ mTL ; return p

Decode(p) // |p| = 576

if p[192 : 224] ̸= 00000000∨ p[224 : 256] ̸= 00000028∨ p[256 : 288] ̸= 65f7a375 :
return ⊥

r← p[0 : 128] ; mid← p[128 : 192] ; m← p[288 : 576] ; return r, mid, m

Fig. 8. MTProto 1.0 channel encryption for a message sent from the client to the server. Note that the scheme is
with respect to the particular binding request req = bind_auth_key_inner, and we have len(mTL) = len(132+288) =
00000028.

17



Table 1. Parameters for MTProto key exchange protocols, where G′ = G0:672 ×G704:1024.

MTP-KE2st MTP-KE3st
M 2 3
TYPE {pub} {pub, sym}
AUTH (R-only, R-only) (R-only, R-only, mutual)
TS (testable, testable) (testable, testable, auth-only)
USE (internal, external) (internal, internal, none)
FS 2 2
KD dependent dependent

DIST ({0, 1}256, G0:1024) ({0, 1}256, G′, G′)

4.4 Protocol definitions

Key generation for both protocols is shown in Fig. 9. Notice that symmetric key generation is stateful to
enable modelling the fact that aid values are randomly sampled without replacement for each server.22

KE.KGenpub()
// 2048-bit

(pk, sk)←$ RSA.KGen()
return (pk, sk)

MTP-KE3st.KGensym(V) // V ∈ Urole ∧V.role = R

if SV
aid undefined : SV

aid ← ∅

aid←$ {0, 1}64\SV
aid ; SV

aid ← SV
aid ∪ {aid}

akv1 ←$ {0, 1}1024 ; return (aid, akv1)

Fig. 9. Key generation for KE = MTP-KE2st,MTP-KE3st.

In the following subsections, we define the behaviour of KE.Init, KE.Run for KE = MTP-KE2st,MTP-KE3st,
where Init is assumed to cover the first message sent by the client. The protocol definitions are based
on Telegram documentation [Tel22c] as well as the source code of the official apps for Android and
desktop [Tel22d,Tel22e]. Though we do not model this explicitly, packets sent as part of the key exchange
are of the form 00000000 00000000 ∥ mid ∥ len(m) ∥ m, where mid is a random 64-bit message identifier
and m itself is in plaintext or partially encrypted.

Figure 10 shows a simplified overview of both protocols, while Appendix A provides detailed figures for
each stage. Though MTP-KE2st uses ak to denote the stage 2 session key, MTP-KE3st uses ak to denote
the long-term shared symmetric key and akt to refer to the stage 2 session key. In the figures, we omit
displaying TL encoding of protocol messages at any level, and we use “x ... y” as shorthand for x ∥ z ∥ y
where z is unimportant; we denote the current state of the protocol session by st. Note that TL decoding
failures always result in rejection.

The two-stage protocol MTP-KE2st.

Stage 1. The first stage (also shown in Fig. 11) proceeds as follows:

1. The client is initialised with the knowledge of the server’s RSA public key pk,23 and sets s.vid to the
server’s identity. The client samples a nonce n←$ {0, 1}128 and sends m = TL(req_pq_multi, n) to
the server.

22 As we explain in Section 4.5, our description of MTP-KE3st.KGensym represents a simplifying assumption, since
the real ak from which akv1 and aid are derived is actually the output of an instance of MTP-KE2st. We do not
model this dependency between the 2-stage and 3-stage protocols in this work.

23 Telegram clients are shipped with the hardcoded key, though its value may differ between platforms.

18



Client (knows pk) Server (has (pk, sk))

n←$ {0, 1}128 n ns ←$ {0, 1}128

nn ←$ {0, 1}256 n, ns, prod′,F p′, q′ ←$ {32-bit primes s.t.

p′ · q′ < 263}

c0 ←$ TOAEP+.Enc(pk, ... nn ...) n, ns, p′, q′, f , c0 ... nn ...← TOAEP+.Dec(sk, c0)

Stage 1

sid.1 = (pk, n, ns, c0) ; sskey.1 = nn

Client (knows pk) Server (has (pk, sk),Said)
a←$ {0, 1}2048

kse ← SKDF.Ev(nn, ns) kse ← SKDF.Ev(nn, ns)

... ga ...← HtE-SE.Dec(kse, c1)
n, ns, c1 c1 ←$ HtE-SE.Enc(kse, ... ga ...)

. . . . . . . . . . . . . . . . . . . . . . . . . . . Repeatable up to ridmax retries . . . . . . . . . . . . . . . . . . . . . . . . . . .

b←$ {0, 1}2048

c2 ←$ HtE-SE.Enc(kse, ... gb ...) n, ns, c2 ... gb ...← HtE-SE.Dec(kse, c2)

ak← (ga)b mod p ; akt ← ak ak← (gb)a mod p ; akt ← ak
ax ... aid← SHA-1(ak) ; aidt ← aid ax ... aid← SHA-1(ak) ; aidt ← aid

if aid /∈ Said : accept else : retry
K← ak[0 : 1024] K← ak[0 : 1024]
K← (akt[0 : 672], akt[704 : 1024]) K← (akt[0 : 672], akt[704 : 1024])

if h OK : accept else : retry n, ns, h h← NHst.Ev(nn, ax)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stage 2

sid.2 = (sid.1, ga mod p, gb mod p, h) ; sskey.2 = K

Client (has akv1, aid) Server (has Tsym)

salt← nn[0 : 64]⊕ ns[0 : 64] salt← nn[0 : 64]⊕ ns[0 : 64]
(stI , _)← MTP-CH.Init(sskey.2, (_, stR)← MTP-CH.Init(sskey.2,

(aidt, salt)) (aidt, salt))
cin ← CHv1.Enc(akv1, ... aidt ∥ aid ...)

(stI , cbind)← MTP-CH.Send(stI , cbind aid ... cin ← MTP-CH.Recv(stR, cbind)

aid ... cin)
(_, akv1)← Tsym[aid] ; check cin

ctrue (stR, ctrue)← MTP-CH.Send(stR, true)

Stage 3

sid.3 = (sid.2, aid, sidt) ; sskey.3 = sskey.2

Fig. 10. Simplified overview of the protocols MTP-KE2st andMTP-KE3st (parts only present in MTP-KE3st are shown
in grey).

19



2. The server samples a “server nonce” ns ←$ {0, 1}128, picks two primes p′, q′ such that their product
prod′ = p′ · q′ ≤ 263− 1, and puts together a set F = {SHA-1(pk)[96 : 160]} (for a suitable serialisation
of pk) that contains the “fingerprint” of its RSA public key.24 It sends m = TL(resPQ, n, ns, prod′,F ) to
the client.

3. The client factors the product prod′ to recover p′, q′, samples a “new nonce” nn ←$ {0, 1}256, checks
that the fingerprint f = SHA-1(pk)[96 : 160] is in the set F , and creates the ciphertext c0 ←$

TOAEP+.Enc(pk, m0) where

m0 ← TL(p_q_inner_data_dc, prod′, p′, q′, n, ns, nn, dc),

for some dc ∈ {0, 1}32.25 It sends m = TL(req_DH_params, n, ns, p′, q′, f , c0) to the server.

4. The server decrypts c0 with its private key sk. If decryption succeeds and m0 is valid and contains the
expected values n, ns, the server accepts sid.1 ← (pk, n, ns, c0) and sskey.1 ← nn and proceeds with
stage 2. Else, it rejects.

Stage 2. The second stage (also shown in Fig. 12) proceeds as follows:

1. The server, continuing its computation, proceeds to sample a←$ {0, 1}2048 and to create the ciphertext
c1 ←$ HtE-SE.Enc(k ∥ iv, m1) where

k ∥ iv← SKDF.Ev(nn, ns)

m1 ← TL(server_DH_inner_data, n, ns, g, p, ga mod p, servertime),

for the fixed DH parameters g, p and a 32-bit timestamp servertime.
It sends m = TL(server_DH_params_ok, n, ns, c1) to the client.

2. The client recomputes k ∥ iv← SKDF.Ev(nn, ns), decrypts c1, parses the decrypted m1, verifies that
the received n, ns match the expected values and checks p, g, ga.26 Then, it samples b←$ {0, 1}2048 and
creates the ciphertext c2 ←$ HtE-SE.Enc(k ∥ iv, m2) where

m2 ← TL(client_DH_inner_data, n, ns, rid, gb mod p),

for “retry id” rid ← 0 if this is the first run of this step, else rid ← rid + 1.27 It sends m =
TL(set_client_DH_params, n, ns, c2) to the server.

3. The server decrypts c2, parses the decrypted m2 and verifies that the received n, ns match the expected
values. The server computes the auth key ak← (gb)a mod p as well as the corresponding “auth key
aux hash” ax← SHA-1(ak)[0 : 64] and the “auth key id” aid← SHA-1(ak)[96 : 160]. Then it proceeds
in one of the following ways:

(a) If aid is unique with respect to Said, the set of all accepted aid’s of this server, it computes
h1 ← NH.Ev(nn, ax, 1) and sends m = TL(dh_gen_ok, n, ns, h1) to the client. It accepts sid.2 ←
(sid.1, ga mod p, gb mod p, h) and sskey.2← ak[0 : 1024].

(b) If aid is not unique, i.e. aid ∈ Said, it sets h2 ← NH.Ev(nn, ax, 2) and sends m = TL(dh_gen_retry,
n, ns, h2) to the client. The server restarts from Step 3, expecting a fresh gb and rid.

24 The protocol is designed to work with a number of public keys, but in our model each server only holds a single
pk, and so |F | = 1. We discuss this more in Section 4.5.

25 The value dc identifies the Telegram data centre, however it is not relevant for our analysis of the protocol.
26 In more detail, this includes checking if p is a safe prime, 2 < g < 7, the order of g is (p− 1)/2, and various checks

on bit sizes. Since in practice fixed parameters are used, we assume these checks always pass; see Section 4.5 for
more discussion.

27 Here, we diverge from current implementation, which sets rid ← SHA-1(ak)[0 : 64] for ak from the previous
attempt. See Section 4.5 for justification for this change.

20



4. The client computes ak← (ga)b mod p and ax← SHA-1(ak)[0 : 64], aid← SHA-1(ak)[96 : 160]. Then,
depending on the TL type of the received m:

(a) If m = TL(dh_gen_ok, n, ns, h) and h = NH.Ev(nn, ax, 1), it accepts sid.2← (sid.1, ga mod p, gb mod
p, h), sskey.2← ak[0 : 1024].

(b) If m = TL(dh_gen_retry, n, ns, h) and h = NH.Ev(nn, ax, 2), it restarts from Step 2.28

Both the client and the server reject if the number of total retries reaches ridmax.

The three-stage protocol MTP-KE3st.

Stages 1 and 2. The first and the second stage are identical with that of MTP-KE2st, except for the following.
In stage 1, the message m0 computed in Step 3 has a different header and contains one more message
field:

m0 ← TL(p_q_inner_data_temp_dc, prod′, p′, q′, n, ns, nn, dc, exp),

where exp← 24 · 60 · 60 is the “expiration” time of the temporary key in seconds. In stage 2, the output
session key uses 32 fewer bits of the agreed DH value, in particular sskey.2← (akt[0 : 672], akt[704 : 1024]).
Figures 11 and 12 in Appendix A highlight these differences.

Stage 3. Both the client and the server are expected to have been initialised with at least one tuple
(W, kid, key) where W is the identity of the expected partner, kid = aid, and key = akv1. The server collates
all such tuples it receives in a table Tsym so that Tsym[aid] = (W, akv1). The client sets its s.kid to the first
value of (W, aid) it receives.

The third stage (also shown in Fig. 13) proceeds as follows:

1. The client computes a “server salt” value salt← nn[0 : 64]⊕ ns[0 : 64], and uses it with aidt to initialise
the MTProto 2.0 channel under the stage 2 session key (akt[0 : 672], akt[704 : 1024]). It then sends a
special message mbind within this channel, which itself contains another ciphertext encrypted under
the MTProto 1.0 channel using the shared symmetric key:

min ← TL(bind_auth_key_inner, nb, aidt, aid, sidt, exp)
cin ← CHv1.Enc(akv1, (mid, min))

mbind ← TL(auth.bindTempAuthKey, aid, nb, exp, cin)

where nb ←$ {0, 1}64, sidt is the session id from the outer MTProto 2.0 channel, and exp is a 32-bit
expiration timestamp set to 24 hours from current time. The mid field that serves as input to the inner
MTProto 1.0 encryption algorithm (Fig. 8) is the same value used in the outer MTP-CH ciphertext.29

2. The server likewise initiates the MTProto 2.0 channel and uses it to process the client’s message mbind.
If the value of exp within mbind is in the past, it rejects. It uses the table Tsym[aid] with aid taken from
the client’s message to find the claimed identity W as well as the key akv1. It sets s.kid← (W, aid). It
retrieves mid and sidt from the state of the channel. Then, it decrypts the inner ciphertext cin with
CHv1.Dec under akv1 to get (mid′, m′in).

It checks that mid′ = mid, and then checks the contents of m′in, which must contain nb and exp from
mbind as well as aidt, aid and sidt. If all checks pass, it sends the message mtrue ← TL(boolTrue) using
the channel, sets s.vid ← W and accepts sid.3 = (sid.2, aid, sidt) and sskey.3 = sskey.2, i.e. this stage
has no “new” session key output.30

28 In the code, the client also checks if m = TL(dh_gen_fail, n, ns, h) where h = NH.Ev(nn, ax, 3), in which case it
rejects; however, this case never seems to arise in practice, and so we omit it from our model of the protocol.

29 The value of mid is normally generated as part of MTP-CH.Send, but here it must be picked first in order to
compute cin. Note that in the formalisation of MTP-CH in [AMPS22], the field mid is subsumed into a counter
value Nsent alongside the sequence number, but we explicitly surface it here to stay closer to the implementation.

30 This does not introduce issues because stage 3 is not testable.

21



3. The client processes the server’s message using its existing MTProto 2.0 channel. It accepts if and
only if it gets the message mtrue = TL(boolTrue).

Session identifiers. For both protocols, we define the accepting outputs as:

sid.1 := (pk, n, ns, c0)

sskey.1 := nn

sid.2 := ((pk, n, ns, c0), ga mod p, gb mod p, h)
sskey.2 := ak[0 : 1024] in MTP-KE2st ; (akt[0 : 672], akt[704 : 1024]) in MTP-KE3st

sid.3 := (((pk, n, ns, c0), ga mod p, gb mod p, h), aid, sidt)
sskey.3 := (akt[0 : 672], akt[704 : 1024]).

In Appendix B.2, we justify this choice of definition. In both protocols, the contributive identifiers for the
first stage are set as cid.1 = pk at the beginning, cid.1 = (pk, n) after the first message, cid.1 = (pk, n, ns)
after the second message and cid.1 = (pk, n, ns, c0) = sid.1 after the third message. The second stage
sets cid.2 = (pk, n, ns, c0) at the beginning, cid.2 = (pk, n, ns, c0, ga mod p) after the first message and
cid.2 = (pk, n, ns, c0, ga mod p, gb mod p) after the second message. Since the third stage is mutually
authenticated, cid.3 = sid.3 is set after the first message. The protocol also sets kcid.3 = cid.3 at the same
time.

4.5 Differences and the scope of the model

Here we list the main differences between our model and Telegram implementations. The remaining
differences can be found in Appendix B.1. For justification of some of the modelling choices we make
which do not represent a change from the implementation, see Appendix B.2.

Independence of protocols. We do not model that MTP-KE3st and MTP-KE2st are run composed in practice,
i.e. we do not capture that the long-term symmetric key used in the binding request in MTP-KE3st comes
from a previous run of MTP-KE2st, though both are denoted as ak. That is, in our model we introduce a
function MTP-KE3st.KGensym that we allow the adversary to call in NEWSECRET. This approach allows
us to focus on the main task of analysing the security of each protocol in isolation. We leave the task of
proving that composing MTP-KE2st with MTP-KE3st does not introduce additional issues as future work.

Our model also does not allow for generic composition of our theorems about MTP-KE3st and the existing
results about the channel MTP-CH. Obtaining a specific composition result would first require bridging
the gap between the nonstandard session key distribution and the uniform distribution assumed by the
proofs in [AMPS22]. Proving composition would however still be difficult due to other features of the
protocol such as key dependence and internal use of session keys, but also due to the way we define
session identifiers.

One public key per server. We assume that each server has a single associated public key rather than
multiple; at the time of writing, this is true from the perspective of the official clients, it has however not
always been so. While we could make the model more general, we could not capture that clients may
update their store of server public keys out-of-band in response to corruption. As a result, there would be
a trivial downgrade attack in such a model, and to avoid it we would have to restrict the CORRUPT query
to corrupt all keys of a given server at the same time in order to argue about its security. Thus we model a
single key per server, which is equivalent in behaviour but allows for a simpler presentation.

Fixed number of retries. Our model of the protocol makes two modifications to the retry mechanism in
stage 2. First, we define rid as a simple counter instead of setting it to SHA-1(ak)[0 : 64] of the previously
agreed ak. In theory, this could enable replay attacks due to collisions in rid, however such a replayed
message would never lead to the server accepting the replayed key: by definition, the server must have
proceeded with a retry for the original message because aid ∈ Said, which will likely still be true at the

22



time of the replay.31 Similarly, if a particular retry attempt collided on rid, and the attacker dropped the
message preceding the one with the collision, this would not be noticed by the server. However, this is a
highly contrived scenario, since none of the information necessary to make a correct choice on which
message to drop would be available to the attacker.

Second, the implementation allows a large number of retries. In practice, because of a time limit of 10
minutes for each run of the key exchange, the number of possible retries is actually bounded. But the
precise bound would be dependent on network conditions. Moreover, a server’s probability of requesting
another retry is directly related to the size of Said, i.e. the number of other sessions in which it has
completed an exchange. We have modified the protocol to upper-bound the number of possible retries by
a parameter ridmax. This enables us to achieve a proof with meaningful security bounds.32 We argue that
a value as low as ridmax = 32 would suffice for smooth operation of the protocol and would be easy for
Telegram to implement.

A hypothetical replay attack. If the adversary could replay past binding messages in stage 3 of MTP-KE3st,
it could break client authentication. There is an attack in the following scenario: the adversary has
compromised a past akt (which is now expired and deleted by the server), and captured its binding
message cbind. This means the attacker can decrypt the channel layer to learn mbind as well as all of its
MTP-CH headers, including sidt and mid. Then the attacker does the following:

1. Run the first two stages of MTP-KE3st with the server to establish a new ak∗t such that aid∗t = aidt from
the compromised session. This requires finding a second-preimage for truncated SHA-1, i.e. setting b in
ak∗t = (ga)b mod p for server-chosen ga and p such that SHA-1(ak∗t )[96 : 160] = SHA-1(akt)[96 : 160].
This would require on the order of 264 hash computations, conceivably within reach for a well-
resourced attacker.

2. Use kk∗, mk∗ derived from ak∗t , the recovered sidt and mid, and server_salt∗ computed from the first
two stages to re-encrypt mbind. Then, send the new ciphertext c∗bind.

The server will decrypt c∗bind, which will parse successfully as a message binding ak∗t to ak only if the
ak∗t is not considered expired. The server used to not check the actual value of exp as long as it matched
the one inside the CHv1-encrypted ciphertext (i.e. a valid key used with a timestamp in the past went
through, while an expired key used with a current timestamp did not). We disclosed this to Telegram
developers, who addressed the issue in response, i.e. the validity of the outer timestamp is checked now.
In our model, we include this check explicitly.

5 Theorem statements

In this section, we state our results about the two MTProto key exchange protocols. Since the two protocols
largely overlap, the main result on MTP-KE2st lies in Theorem 1, with proof in Appendix H.1. Then
Theorem 2, whose proof is in Appendix H.2, expresses how the third stage of MTP-KE3st additionally
achieves client authentication. Our proofs rely on a number of high-level properties, which have their
own separate proofs in Appendices D, F and G.

Theorem 1. Let Urole be any set of users with roles such that no user holds more than one role. Let MTP-KE2st
be as defined in Section 4, and A be an adversary against MTP-KE2st in the Multi-Stage game (Definition 3)
parametrised by Urole with at most nS sessions and npk different parties in the role of a responder. Let nR be the
maximum number of retries performed by any session, so nR ≤ ridmax. Then there exist adversaries AIND-CCA
against the IND-CCA-security of TOAEP+ (Fig. 21), AINT-PTXT against the INT-PTXT-security of HtE-SE
with SKDF and SAMP[·, ·, g, p] (Definition 13), DIND-KEY against the IND-KEY-security of SKDF and NH

31 It would not be true in the edge case that the given aid had just expired and been therefore removed from Said in
the time between the original message and the replay.

32 See Appendix I for further discussion related to this point.

23



(Definition 9), DS-EXP against the S-EXP problem in the fixed group G of order q (Definition 1), DDDH against
the DDH assumption in G, and DOTPRF against the OTPRF-security of SHACAL-1 such that

AdvMulti-Stage
MTP-KE2st,Urole(A) ≤

n2
S

2384 +
npk n

2
S

2497 +
16 npk n3

S

q

+ 4 npk nS (nS + 1) ·
(

2AdvIND-CCA
TOAEP+(AIND-CCA)

+ AdvINT-PTXT
HtE-SE,SKDF,SAMP,g,p(AINT-PTXT)

)
+ 4 npk n

2
S ·
(
AdvIND-KEY

SKDF,NH(DIND-KEY) + AdvS-EXP
G,q (DS-EXP)

+ AdvDDH
G,q (DDDH) + AdvOTPRF

SHACAL-1(DOTPRF)
)

.

Theorem 2. Let Urole and MTP-KE2st be as in Theorem 1. Let MTP-KE3st be as defined in Section 4, and A
be an adversary against MTP-KE3st in the Multi-Stage game (Definition 3) parametrised by Urole. Then there
exist adversaries AEUF-CMA against the EUF-CMA-security of CHv1 (Definition 17), and AKE against the
Multi-Stage-security of MTP-KE2st such that

AdvMulti-Stage
MTP-KE3st,Urole(A) ≤ AdvMulti-Stage

MTP-KE2st,Urole(AKE) + 2AdvEUF-CMA
CHv1 (AEUF-CMA).

Acknowledgements

We thank Felix Günther and Joseph Jaeger for discussions and insights. The research of Albrecht was
supported by EPSRC grant EP/X017524/1. The research of Mareková was supported by ZISC. The
research of Ronen was supported in part by an ISF grant no. 1807/23.

24



References

ABJM21. Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and Lenka Mareková. Collective information security
in large-scale urban protests: the case of hong kong. In Michael Bailey and Rachel Greenstadt, editors,
USENIX Security 2021, pages 3363–3380. USENIX Association, August 2021. 3

AMPS22. Martin R. Albrecht, Lenka Mareková, Kenneth G. Paterson, and Igors Stepanovs. Four attacks and a proof
for Telegram. In 2022 IEEE Symposium on Security and Privacy, pages 87–106. IEEE Computer Society Press,
May 2022. 3, 5, 13, 14, 15, 16, 21, 22, 31, 84, 106

AMPS23. Martin R. Albrecht, Lenka Mareková, Kenneth G. Paterson, and Igors Stepanovs. Four attacks and a proof
for telegram. Cryptology ePrint Archive, Report 2023/469, 2023. 14, 81

BCJ+24. Chris Brzuska, Cas Cremers, Håkon Jacobsen, Douglas Stebila, and Bogdan Warinschi. Falsifiability,
composability, and comparability of game-based security models for key exchange protocols. Cryptology
ePrint Archive, Paper 2024/1215, 2024. 31

BDPR98. Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions of security
for public-key encryption schemes. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages
26–45. Springer, Berlin, Heidelberg, August 1998. 40

BFS+12. C. Brzuska, M. Fischlin, N. P. Smart, B. Warinschi, and S. Williams. Less is more: Relaxed yet composable
security notions for key exchange. Cryptology ePrint Archive, Report 2012/242, 2012. 31

BFWW11. Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C. Williams. Composability of Bellare-
Rogaway key exchange protocols. In Yan Chen, George Danezis, and Vitaly Shmatikov, editors, ACM
CCS 2011, pages 51–62. ACM Press, October 2011. 6, 8, 11, 31

BR94. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R. Stinson,
editor, CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer, Berlin, Heidelberg, August 1994. 6

BR95. Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Alfredo De Santis, editor,
EUROCRYPT’94, volume 950 of LNCS, pages 92–111. Springer, Berlin, Heidelberg, May 1995. 38, 40

BR06. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426.
Springer, Berlin, Heidelberg, May / June 2006. 5

CCD+23. Vincent Cheval, Cas Cremers, Alexander Dax, Lucca Hirschi, Charlie Jacomme, and Steve Kremer. Hash
gone bad: Automated discovery of protocol attacks that exploit hash function weaknesses. In Calandrino
and Troncoso [CT23], pages 5899–5916. 3

CT23. Joseph A. Calandrino and Carmela Troncoso, editors. USENIX Security 2023. USENIX Association, August
2023. 25, 26

DDGJ22. Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager. On the concrete security of TLS 1.3 PSK
mode. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of
LNCS, pages 876–906. Springer, Cham, May / June 2022. 4, 6, 11

DFGS21. Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic analysis of the
TLS 1.3 handshake protocol. Journal of Cryptology, 34(4):37, October 2021. 4, 6, 11, 90

DFW20. Cyprien Delpech de Saint Guilhem, Marc Fischlin, and Bogdan Warinschi. Authentication in key-exchange:
Definitions, relations and composition. In Limin Jia and Ralf Küsters, editors, CSF 2020 Computer Security
Foundations Symposium, pages 288–303. IEEE Computer Society Press, 2020. 11

EM97. Shimon Even and Yishay Mansour. A construction of a cipher from a single pseudorandom permutation.
Journal of Cryptology, 10(3):151–162, June 1997. 5, 69, 70

FG14. Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of Google’s QUIC protocol.
In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages 1193–1204. ACM Press,
November 2014. 4, 6, 11

FG17. Marc Fischlin and Felix Günther. Replay attacks on zero round-trip time: The case of the TLS 1.3
handshake candidates. In 2017 IEEE European Symposium on Security and Privacy, pages 60–75. IEEE
Computer Society Press, April 2017. 4, 6

FGSW16. Marc Fischlin, Felix Günther, Benedikt Schmidt, and Bogdan Warinschi. Key confirmation in key exchange:
A formal treatment and implications for TLS 1.3. In 2016 IEEE Symposium on Security and Privacy, pages
452–469. IEEE Computer Society Press, May 2016. 11

FOPS01. Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern. RSA-OAEP is secure under
the RSA assumption. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 260–274. Springer,
Berlin, Heidelberg, August 2001. 40, 42

FPSZ06. Pierre-Alain Fouque, David Pointcheval, Jacques Stern, and Sébastien Zimmer. Hardness of distinguishing
the MSB or LSB of secret keys in Diffie-Hellman schemes. In Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener, editors, ICALP 2006, Part II, volume 4052 of LNCS, pages 240–251. Springer,
Berlin, Heidelberg, July 2006. 102

25



Gün18. Felix Günther. Modeling advanced security aspects of key exchange and secure channel protocols.
https://www.felixguenther.info/publications/phdthesis-felix-guenther.pdf, 2018. 6, 7, 11, 106

HGFS15. Clemens Hlauschek, Markus Gruber, Florian Fankhauser, and Christian Schanes. Prying open pandora’s
box: KCI attacks against TLS. In Aurélien Francillon and Thomas Ptacek, editors, 9th USENIX Workshop
on Offensive Technologies, WOOT ’15, Washington, DC, USA, August 10-11, 2015. USENIX Association, 2015.
11

JO16. Jakob Jakobsen and Claudio Orlandi. On the CCA (in)security of MTProto. Proceedings of the 6th Workshop
on Security and Privacy in Smartphones and Mobile Devices - SPSM’16, 2016. 3, 4, 105

Jut00. Charanjit Jutla. Attack on free-mac, sci.crypt. https://groups.google.com/forum/#!topic/sci.crypt/
4bkzm_n7UGA, Sep 2000. 43

KK04. Takeshi Koshiba and Kaoru Kurosawa. Short exponent Diffie-Hellman problems. In Feng Bao, Robert
Deng, and Jianying Zhou, editors, PKC 2004, volume 2947 of LNCS, pages 173–186. Springer, Berlin,
Heidelberg, March 2004. 5, 6

Kob18. Nadim Kobeissi. Formal Verification for Real-World Cryptographic Protocols and Implementations. Theses,
INRIA Paris ; Ecole Normale Supérieure de Paris - ENS Paris, December 2018. https://hal.inria.fr/
tel-01950884. 3

LP20. Gaëtan Leurent and Thomas Peyrin. SHA-1 is a shambles: First chosen-prefix collision on SHA-1 and
application to the PGP web of trust. In Srdjan Capkun and Franziska Roesner, editors, USENIX Security
2020, pages 1839–1856. USENIX Association, August 2020. 105

MV21. Marino Miculan and Nicola Vitacolonna. Automated symbolic verification of Telegram’s MTProto 2.0. In
Sabrina De Capitani di Vimercati and Pierangela Samarati, editors, Proceedings of the 18th International
Conference on Security and Cryptography, SECRYPT 2021, pages 185–197. SciTePress, 2021. 3

PST23. Kenneth G. Paterson, Matteo Scarlata, and Kien T. Truong. Three lessons from threema: Analysis of a
secure messenger. In Calandrino and Troncoso [CT23], pages 1289–1306. 3

RSA78. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the Association for Computing Machinery, 21(2):120–126,
February 1978. 40, 42

SBK+17. Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov. The first collision for
full SHA-1. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 570–596. Springer, Cham, August 2017. 105

Sho02. Victor Shoup. OAEP reconsidered. Journal of Cryptology, 15(4):223–249, September 2002. 4, 14, 38, 40, 41,
43, 44

SK17. Tomáš Sušánka and Josef Kokeš. Security analysis of the Telegram IM. In Proceedings of the 1st Reversing
and Offensive-oriented Trends Symposium, pages 1–8, 2017. 3

Tel22a. Telegram. Android – Handshake.cpp, lines 604-611. https://github.com/DrKLO/Telegram/blob/
e9a35cea54c06277c69d41b8e25d94b5d7ede065/TMessagesProj/jni/tgnet/Handshake.cpp#L604-L611,
2022. 15

Tel22b. Telegram. auth.bindTempAuthKey. https://web.archive.org/web/20221027143231/https://core.
telegram.org/method/auth.bindTempAuthKey, Oct 2022. 13

Tel22c. Telegram. Creating an authorization key. https://web.archive.org/web/20230913145441/https://core.
telegram.org/mtproto/auth_key, Oct 2022. 14, 18

Tel22d. Telegram. Official android client. https://github.com/DrKLO/Telegram/, 2022. 18
Tel22e. Telegram. Official desktop client. https://github.com/telegramdesktop/tdesktop/, 2022. 18
Tel22f. Telegram. Schema. https://web.archive.org/web/20221027161143/https://core.telegram.org/

schema, Oct 2022. 5
Tel22g. Telegram. Two-factor authentication. https://web.archive.org/web/20221027152821/https://core.

telegram.org/api/srp, Oct 2022. 13
vAP23. Theo von Arx and Kenneth G. Paterson. On the cryptographic fragility of the telegram ecosystem. In

Joseph K. Liu, Yang Xiang, Surya Nepal, and Gene Tsudik, editors, ASIACCS 23, pages 328–341. ACM
Press, July 2023. 3

26

https://www.felixguenther.info/publications/phdthesis-felix-guenther.pdf
https://groups.google.com/forum/#!topic/sci.crypt/4bkzm_n7UGA
https://groups.google.com/forum/#!topic/sci.crypt/4bkzm_n7UGA
https://hal.inria.fr/tel-01950884
https://hal.inria.fr/tel-01950884
https://github.com/DrKLO/Telegram/blob/e9a35cea54c06277c69d41b8e25d94b5d7ede065/TMessagesProj/jni/tgnet/Handshake.cpp#L604-L611
https://github.com/DrKLO/Telegram/blob/e9a35cea54c06277c69d41b8e25d94b5d7ede065/TMessagesProj/jni/tgnet/Handshake.cpp#L604-L611
https://web.archive.org/web/20221027143231/https://core.telegram.org/method/auth.bindTempAuthKey
https://web.archive.org/web/20221027143231/https://core.telegram.org/method/auth.bindTempAuthKey
https://web.archive.org/web/20230913145441/https://core.telegram.org/mtproto/auth_key
https://web.archive.org/web/20230913145441/https://core.telegram.org/mtproto/auth_key
https://github.com/DrKLO/Telegram/
https://github.com/telegramdesktop/tdesktop/
https://web.archive.org/web/20221027161143/https://core.telegram.org/schema
https://web.archive.org/web/20221027161143/https://core.telegram.org/schema
https://web.archive.org/web/20221027152821/https://core.telegram.org/api/srp
https://web.archive.org/web/20221027152821/https://core.telegram.org/api/srp


A Detailed protocol figures

Stage 1 of MTP-KE2st/ MTP-KE3st

Client (knows pk) Server (has (pk, sk))

n←$ {0, 1}128 n ns ←$ {0, 1}128

p′, q′ ←$
{

p′, q′ | p′, q′ prime

∧ p′ · q′ < 263}
prod′ ← p′ · q′

p′, q′ ← factor prod′ n, ns, prod′,F F ← {SHA-1(pk)[96 : 160]}

f ← SHA-1(pk)[96 : 160]

if f /∈ F : reject

nn ←$ {0, 1}256

exp← 24 · 60 · 60

m0 ← (prod′, p′, q′, n,

ns, nn, ... , exp )

c0 ←$ TOAEP+.Enc(pk, m0)
n, ns, p′, q′, f , c0 m′0 ← TOAEP+.Dec(sk, c0)

if m′0 = ⊥ : reject

(prod′′, p′′, q′′, n′, n′s, nn,

... , exp )← m′0

valid← p′′ · q′′ = prod′

∧ (n′, n′s) = (n, ns)

if ¬valid : reject

sid.1 = (pk, n, ns, c0) ; sskey.1 = nn

Fig. 11. Stage 1 of MTP-KE2st and MTP-KE3st in pseudocode. Boxed code is only relevant for MTP-KE3st. We omit
displaying the TL encoding of protocol messages. Fields not relevant for the cryptographic protocol are denoted only
as “...”.

27



Stage 2 of MTP-KE2st/ MTP-KE3st

Client (knows pk) Server (has (pk, sk),Said)
a←$ {0, 1}2048

m1 ← (n, ns, g, p, ga mod p, ...)
kse ← SKDF.Ev(nn, ns)

kse ← SKDF.Ev(nn, ns)
n, ns, c1 c1 ←$ HtE-SE.Enc(kse, m1)

m1 ← HtE-SE.Dec(kse, c1)

if m1 = ⊥ : reject

(n′, n′s, g, p, ga mod p, ...)← m1

if (n′, n′s) ̸= (n, ns) : reject
rid← 0 rid← 0
. . . . . . . . . . . . . . . . . . . . . . . . . Repeatable while rid ≤ ridmax . . . . . . . . . . . . . . . . . . . . . . . . .

b←$ {0, 1}2048

m2 ← (n, ns, rid, gb mod p)

c2 ←$ HtE-SE.Enc(kse, m2)
n, ns, c2 m2 ← HtE-SE.Dec(kse, c2)

if m2 = ⊥ : reject

(n′, n′s, rid′, gb mod p)← m2

if (n′, n′s, rid′) ̸= (n, ns, rid) : reject

ak← (ga)b mod p ; akt ← ak ak← (gb)a mod p ; akt ← ak

ax← SHA-1(ak)[0 : 64] ax← SHA-1(ak)[0 : 64]
aid← SHA-1(ak)[96 : 160] aid← SHA-1(ak)[96 : 160]

aidt ← aid aidt ← aid

if aid /∈ Said :
h1 ← NH.Ev(nn, ax, 1) h← NH.Ev(nn, ax, 1)

accept
else :

h2 ← NH.Ev(nn, ax, 2) h← NH.Ev(nn, ax, 2)
rid← rid + 1
retry

if h = h1 : accept n, ns, h

elseif h = h2 :
rid← rid + 1
retry

else : reject
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sid.2 = (sid.1, ga mod p, gb mod p, h) ; sskey.2 = ak[0 : 1024] (akt[0:672], akt[704:1024])

Fig. 12. Stage 2 of MTP-KE2st and MTP-KE3st in pseudocode. Boxed code is only relevant for MTP-KE3st. We omit
displaying the TL encoding of protocol messages.

28



Stage 3 of MTP-KE3st

Client (has akv1, aid) Server (has Tsym)

salt← nn[0 : 64]⊕ ns[0 : 64] salt← nn[0 : 64]⊕ ns[0 : 64]

(stI , _)← MTP-CH.Init(sskey.2, (aidt, salt)) (_, stR)← MTP-CH.Init(sskey.2, (aidt, salt))

(_, _, _, stME,I )← stI ; (sidt, _, _)← stME,I

nb ←$ {0, 1}64

exp← CurrentTime() + 24 · 60 · 60

min ← (nb, aidt, aid, sidt, exp)

mid←$ {0, 1}64

cin ← CHv1.Enc(akv1, (mid, min))

mbind ← (aid, nb, exp, cin)

stI ← SetNextMsgId(stI , mid)

(stI , cbind)← MTP-CH.Send(stI , mbind, ε)

cbind

(stR, mbind)← MTP-CH.Recv(stR, cbind, ε)

(_, _, _, stME,R)← stR ; (sidt, _, _)← stME,R

if mbind = ⊥ : reject

mid← GetLastMsgId(stR)

(aid, nb, exp, cin)← mbind

if exp ≥ CurrentTime() : reject

if Tsym[aid] = ⊥ : reject

(_, akv1)← Tsym[aid]

(mid′, min)← CHv1.Dec(akv1, cin)

if min = ⊥ : reject

if mid′ ̸= mid : reject

(n′b, aid′t, aid′, sid′t, exp′)← min

if n′b ̸= nb ∨ aid′t ̸= aidt ∨ aid′ ̸= aid

∨ sid′t ̸= sidt ∨ exp′ ̸= exp : reject

mtrue ← true

(stR, ctrue)← MTP-CH.Send(stR, mtrue, ε)

ctrue

(stI , mtrue)← MTP-CH.Recv(stI , ctrue, ε)

if mtrue ̸= true :

reject

sid.3 = (sid.2, aid, sidt) ; sskey.3 = sskey.2

Fig. 13. Stage 3 of MTP-KE3st in pseudocode. We omit displaying the TL encoding of protocol messages. Note that
SetNextMsgId abstracts away updating the channel state so that the next invocation of MTP-CH.Send uses the given
message id, and GetLastMsgId extracts it from the receiver’s state.

29



B Model details

B.1 Further differences

Following from Section 4.5, here we describe several additional differences of our model compared to the
Telegram implementations.

Fixed Diffie-Hellman parameters. We assume that the server always chooses the same group G for DDH. To
the best of our knowledge, this is true to practice, however it is possible the server could use the flexibility
of the protocol to give different parameters to different clients. However, the impact of this should be
limited as long as the clients check the parameters as prescribed.

Keeping past sessions in memory. In our model, values are never removed from the set Said. This is likely
not true in practice since temporary keys normally expire after 24 hours. However, we do not have
visibility into how Telegram servers manage their stores of current or past sessions, and modelling that
sessions can be forgotten after arbitrary conditions would add undue complexity.

Time synchronisation. We implicitly assume that client and server time is synchronised. In practice,
Telegram client implementations use the servertime timestamp received from the server in Step 1 of
MTP-KE3st to adjust their value of CurrentTime() computed in stage 3.

Changing of session ids and server salts. Telegram “sessions” do not map neatly to runs of the key exchange
protocol. Our model does not capture this. In a normal execution, a run of MTP-KE3st would be composed
with the channel MTP-CH using a fixed “session id” (a field set by the client in each message33) and a
fixed server salt. We do capture this behaviour, however we do not model that during the execution of
the channel, the session identifier and the server salt may change value without a new run of MTP-KE3st.
Correctly capturing these changes would require modifications to the model of the channel itself.

B.2 Modelling choices

Here we expand on our reasoning for some of the choices made in defining the model for MTProto.

Session identifiers. To ensure consistency of the computed session keys (to satisfy the soundness predicate),
the session identifiers must depend on nn (through c0) as well as ga mod p, gb mod p. Further, the session
identifiers must be such that a reduction from an adversary in the Multi-Stage game that makes multiple
TEST queries to an adversary that makes a single TEST query (which is the first step in our proof) can
compute which sessions are partnered at the end of each stage from the observed queries of the original
multi-TEST adversary. This means that nn cannot be included in sid.1 in plaintext form, because the
constructed single-TEST adversary cannot compute this value (since it is also the stage-1 session key) but
without it there is not enough information in sid.1 to compute which sessions are partnered (i.e. using
only the values (pk, n, ns) is not enough).

For the second stage, we face a different problem. The shares ga, gb mod p are transmitted in encrypted
form, but they cannot be fully part of the session identifier in ciphertext form because the encryption
scheme HtE-SE is not IND-CCA secure, permitting the adversary to re-randomise the ciphertexts (either
by appending a random block at the end, or by changing the last block to brute-force the eight or four
bytes of plaintext in it).34 This is an issue because the adversary could cause sessions which derive the
same key to not be considered partnered, which would allow it to call REVEAL on one session and TEST

33 Not to be confused with the session identifier used to define the notion of partnering.
34 Note that it could be possible to use a prefix of the ciphertext (without the last block) as a public session identifier,

as it is only the last block that can be re-randomised, and the prefix would be bound to a large portion of ga and gb;
however, this would result in a more complex proof.

30



on the other without setting the lost flag, thus winning the Multi-Stage game. Thus, ga, gb mod p are part
of the session identifier in plaintext form.35

Session keys. As we hint in Section 4.3, the question of which part of the agreed key material should be
modelled as the session key for each stage does not have a clear answer in MTProto. This has multiple
causes. First, consider defining the stage 2 session key to be ak for MTP-KE2st (or akt for MTP-KE3st).
An adversary that corrupts the server’s RSA keypair and tests a completed session at stage 2 (which is
admissible, since we target forward secrecy) could obtain nn, trivially recompute the value of h and check
the stage 2 messages for a match. We can avoid this key confirmation attack by defining the stage 2 session
key to be only the part of ak that is used later, i.e. ak[0 : 1024] for MTP-KE2st (similarly for MTP-KE3st).

Similarly, consider what should be the session key output of stage 3 in MTP-KE3st. The same channel
which has already been instantiated using the session key output of stage 2 will continue running after
the key exchange. However, there is no key refresh step, so stage 3 effectively outputs the same session
key as stage 2. This causes another trivial key confirmation attack, as the adversary can simply check
whether the session key it is given had been used to instantiate the channel. Prior work has tackled the
issue by excluding such steps from analysis, adding artificial key refresh steps or performing analysis
in a monolithic model which includes composition with the channel (see [BFS+12]). Neither of these
appear to be satisfactory approaches for our use case. Since the only purpose of stage 3 in MTP-KE3st is
to provide client authentication, we forbid the adversary from testing the stage 3 session key directly but
enable it to win the game if it can break authentication. This is, of course, a weakening of the model, but
it appears that stronger security is not achievable without changes to the protocol.

C New security assumptions

In this section, we define a total of five new security games and related assumptions which are needed in
our main proofs for MTProto. These all stem from MTProto’s nonstandard use of certain primitives, in
particular of SHA-1. In each case we give a formal game definition and define the adversary’s advantage.
Since our final security bounds for MTProto are stated concretely in terms of these advantages, we omit
formal statements of security assumptions relating to these games.

Our belief is that all five of these advantages are small for all adversaries consuming “reasonable”
resources. In each case, we have given some informal reasoning for holding this view. Our belief could be
invalidated by cryptanalysis, and our notions certainly warrant further study. We have tried to minimise
the number and complexity of new notions, but we emphasise that we do need all these notions for our
main proofs to go through. Reducing the number or relating them to more standard assumptions is a
challenge for future work. We also stress that invalidating one or more of the five assumptions may not
directly lead to an attack on MTProto, since it may still be possible to prove these protocols secure under
weaker assumptions. That is, our assumptions are collectively sufficient, but may not all be necessary, to
obtain a proof.

C.1 4PRF: SHACAL-1 as a “four-way” PRF with leakage

The assumption below entails PRF-like security for SHACAL-1 in a setting where the adversary has
some control and knowledge of the 512-bit key: specifically, it can control 128 bits in various different
positions and it knows the last 128 bits which are a fixed value; the remaining 256 bits are chosen at
random. However, in this game SHACAL-1 is only evaluated on a fixed plaintext IV160, the IV value used
in SHA-1. This assumption is similar to the SHACAL-2 assumptions used in the proof of the MTProto 2.0
channel [AMPS22].

35 The use of plaintexts in sid.2 combined with the re-randomisation property normally prevents the existence of
a public session matching algorithm, which is needed to make use of general composition results [BFWW11].
However, recent work [BCJ+24] suggests that an alternative proof strategy may circumvent this requirement.

31



Definition 4. Consider the game G4PRF
SHACAL-1,D in Fig. 14 with the block cipher SHACAL-1, and an adversary

D. The advantage of D in breaking the 4PRF-security of SHACAL-1 is defined as Adv4PRFSHACAL-1(D) := 2 ·
Pr
[
G4PRF
SHACAL-1,D

]
− 1.

Game G4PRF
SHACAL-1,D

b←$ {0, 1}
K← []

akv1 ←$ {0, 1}1024

b′ ←$ DROR()

return b′ = b

ROR(msk, type) // |msk| = 128, type ∈ {A, B, C, D}

if type = A :

k← msk ∥ akv1[0 : 256]

if type = B :

k← akv1[256 : 384] ∥ msk ∥ akv1[384 : 512]

if type = C :

k← akv1[512 : 768] ∥ msk

if type = D :

k← msk ∥ akv1[768 : 1024]

y1 ← SHACAL-1.Ev(k ∥ pad, IV160)

if K[msk, type] = ⊥ :

K[msk, type]←$ {0, 1}160

y0 ← K[msk, type]

return yb

Fig. 14. Pseudorandomness of SHACAL-1 with leakage in four modes, where pad is fixed SHA-1 padding for a
message of length 384 and IV160 is the initial state for SHA-1.

C.2 3TPRF: SHACAL-1 as a “three-time” PRF with leakage

The assumption defined here appears similar to the 4PRF notion from the previous section, in that it again
speaks to pseudorandomness of SHACAL-1 with leakage, however it is more restricted. The game below
is more akin to a “one-time” notion, because the adversary only gets to make a single ROR query per
random key, but this query makes three SHACAL-1 invocations for different arrangements of the input x
and the key k (in the 4PRF game, this type of behaviour would be captured by ROR queries for different
msk but the same type). Finally, since this notion will be used in a proof for SKDF, the ROR oracle also
directly leaks the first 32 bits of the key k – this implies that any notion allowing multiple ROR queries
for the same key k would be trivially broken.

Definition 5. Consider the game G3TPRF
SHACAL-1,D in Fig. 15 with the block cipher SHACAL-1, and an adversary

D. The advantage of D in breaking the 3TPRF-security of SHACAL-1 is defined as Adv3TPRFSHACAL-1(D) := 2 ·
Pr
[
G3TPRF
SHACAL-1,D

]
− 1.

C.3 SPR: Sampler-based second-preimage resistance of SHA-1

Message sampler. Before defining the next assumption, we first define a stateful message sampling
function. We assume that the initial state of the message sampler is always st = ε. The message sampler
in Fig. 16 models the fact that a number of retries could happen in the key exchange protocol. A server can
send a single message to the client first, and then the client can send an unlimited number of messages
to the server in response (though in practice this would be constrained by ridmax + 1). The sampler will

32



Game G3TPRF
SHACAL-1,D

b←$ {0, 1}

b′ ←$ DROR()

return b′ = b

ROR(x) // |x| = 128

k←$ {0, 1}256

r0 ← SHACAL-1.Ev(k ∥ x ∥ pad, IV160)

r1 ← SHACAL-1.Ev(x ∥ k ∥ pad, IV160)

r2 ← SHACAL-1.Ev(k ∥ k, IV160)

r′0 ←$ {0, 1}160 ; r′1 ←$ {0, 1}160 ; r′2 ←$ {0, 1}160

y1 ← (r0, r1, r2)

y0 ← (r′0, r′1, r′2)

return k[0 : 32], yb

Fig. 15. Three-time pseudorandomness of SHACAL-1 with leakage, where pad is fixed SHA-1 padding for a message
of length 384 and IV160 is the initial state for SHA-1.

thus later determine the possible inputs to an encryption oracle in a notion of plaintext integrity (see
Appendix F.1). Note that the sampler generates Diffie-Hellman shares, but outputs the secret alongside
the message containing the share; this is because at this point we are not concerned with safeguarding
these secrets but rather ensuring their integrity.

Definition 6. A message sampler Samp = SAMP[n, ns, g, p] is a stateful algorithm defined in Fig. 16, parametrised
by the nonces n, ns and the Diffie-Hellman parameters g, p. Samp takes aux ∈ {0, 1}∗ as input and outputs the
generated messages m, x.

Samp(st, aux) // |aux| = 32 if st = ε, else |aux| = 64

if st = ε : st← “server”

x←$ {0, 1}2048

if st = “server” :

servertime← aux

m← TL(server_DH_inner_data, n, ns, g, p, gx mod p, servertime)

st← “client”

else : // st= “client”

rid← aux

m← TL(client_DH_inner_data, n, ns, rid, gx mod p)

return (st, m, x)

Fig. 16. Message sampler Samp = SAMP[n, ns, g, p] for nonces n, ns, and for DH parameters g, p.

Definition of SPR. In the following assumption, for some message m sampled by the message sampler
Samp we require A to find another message m∗ such that the SHA-1 hashes of these two messages match
in the first 128 bits. This definition appears similar to second-preimage resistance, however it does not
match perfectly for several reasons. First, the messages are not sampled randomly, but according to Samp
– the messages have a common, fixed prefix36 but always contain a large, randomly-derived value of the
form gx mod p. Second, the adversary is given a small amount of control over the message in the form of

36 Though the first, “server”, message has a different header than any following, “client”, messages.

33



an aux value, which is either 32 bits or 64 bits in size. Finally, the adversary can make an arbitrary number
of queries to the oracle NEWMSG, however as used in the key exchange protocol, the number of queries
would be upper-bounded by ridmax + 1.

We argue informally that despite these differences, breaking SPR would require breaking second-preimage
resistance of SHA-1, as there is sufficient randomness in each message and the degree of freedom the
adversary has over the input is very small (especially when compared to what is normally required to
produce SHA-1 collisions). The loss would be dependent on the size ofM, however the value ridmax = 32
suggested for the key exchange protocol would provide a reasonable limit. Note that we do not constrain
the adversary on the format of the message m∗, though in practice this would be necessary to make use
of breaking the assumption in the context of the key exchange protocol.

Definition 7. Consider the game GSPR
SHA-1,Samp,A in Fig. 17 with the hash function SHA-1, the message sampler

Samp (Fig. 16), and an adversary A. The advantage of A in breaking the SPR-security of SHA-1 with respect to
Samp is defined as AdvSPRSHA-1,Samp(A) := Pr

[
GSPR
SHA-1,Samp,A

]
.

Game GSPR
SHA-1,Samp,A

st← ε ; M← ∅ ; (m, m∗)←$ ANEWMSG

p1 ← SHA-1(m)[0 : 128]

p∗1 ← SHA-1(m∗)[0 : 128]

return (m ∈ M) ∧ (m ̸= m∗) ∧ (p1 = p∗1)

NEWMSG(aux) // |aux| = 32 or 64

(st, m, x)←$ Samp(st, aux)

if m = ⊥ : return ⊥
M←M∪ {m}
return (m, x)

Fig. 17. Samp-based second-preimage resistance of truncated SHA-1.

C.4 UPCR: Unpredictable-prefix collision resistance of SHA-1

The assumption below reflects the way SHA-1 is used in CHv1 to compute msk, which we have abstracted
as a function Hv1 that first encodes the given r, mid, m for the use by the MTProto 1.0 channel before
calling SHA-1. Since we cannot rely on plain collision resistance, the UPCR notion narrows the setting
to something more akin to second-preimage resistance, which is still believed to be hard for SHA-1. In
more detail, the assumption requires the adversary to first commit to a set of messages, each of which is
assigned a random value r that is then revealed to the adversary.37 Only then can it submit a colliding
pair, which must be such that m∗ is new and msk∗ was the result of one of the previous evaluations.

Breaking this notion would not necessarily lead to breaking the unforgeability of CHv1 (see Appendix G).
To make use of a UPCR colliding pair, an adversary would be much more restricted than in the game
shown in Fig. 18. This is because in CHv1, the value r corresponding to each EVAL call is never directly
revealed to the adversary; though, since it is encapsulated in a ciphertext block, an adversary could in
theory produce a colliding pair without knowledge of r simply by reusing the first ciphertext block. For
CHv1 decryption to succeed, there would be a remaining obstacle in the form of decoding checks. Since
SEv1 is built on AES-256-IGE, it can in principle be malleable. However, the adversary would need to
construct four ciphertext blocks such that they would decrypt to the values mid∗, m∗ from the colliding
pair (in addition to all of the fixed plaintext fields). Hence, in an attack control over the colliding pair
would exist only in a trade-off with control over the ciphertext blocks.

Definition 8. Consider the game GUPCR
Hv1,A in Fig. 18 with the hash function Hv1 defined in Fig. 8, and an adversary

A. The advantage of A in breaking the UPCR-security of Hv1 is defined as AdvUPCRHv1 (A) := Pr
[
GUPCR
Hv1,A

]
.

37 If the random value r was instead part of input to EVAL, and (r, mid, m) was tracked byM instead of just m, we
would recover a notion close to the standard definition of collision resistance.

34



Game GUPCR
Hv1,A

M← ∅ ; H ← ∅

r∗, mid∗, m∗ ←$ AEVAL()

msk∗ ← Hv1.Ev(r∗, mid∗, m∗)

return m∗ /∈ M∧msk∗ ∈ H

EVAL(mid, m) // |mid| = 64, |m| = 288

M←M∪{m}
r←$ {0, 1}128

msk← Hv1.Ev(r, mid, m)

H ← H∪ {msk}
return r, msk

Fig. 18. Unpredictable-prefix collision resistance of Hv1.

C.5 IND-KEY: Indistinguishability of key reuse between SKDF and NH

Below, we define a notion to capture the requirement put on SKDF with respect to key reuse in MTP-KE2st
and MTP-KE3st. This is because nn, the key used by SKDF, is later used to “key” possibly several
additional NH calls on partially adversarially-controlled input, and both functions are built using SHA-1.
In the game, the adversary is thus given a task to distinguish whether key reuse has taken place, given
the output of SKDF as well as access to an evaluation oracle for NH.38

Note that in the IND-KEY game, the adversary is directly given the first 32 bits of nn, which it can learn
from the value y. However, that still leaves 224 bits that are unknown, which could be viewed to “key”
the NH calls. Though both SKDF and NH output SHA-1 values, there is implicit domain separation in that
the length of the input is different, and so different (but fixed) SHA-1 padding is applied. This means
that the adversary cannot force a collision in the inputs. However, it is possible that it could use a feature
of SHACAL-1 to distinguish the two cases, since it knows more than half of the bits that form the “real”
SHACAL-1 keys.

Definition 9. Consider the game GIND-KEY
SKDF,NH,D in Fig. 19 with the function families SKDF and NH defined in

Section 4.2, and an adversary D = (D1,D2). The advantage of D in breaking the IND-KEY-security of SKDF
and NH is defined as AdvIND-KEY

SKDF,NH(D) := 2 · Pr
[
GIND-KEY
SKDF,NH,D

]
− 1.

Game GIND-KEY
SKDF,NH,D

b←$ {0, 1}
nn ←$ {0, 1}256 ; n′n ←$ {0, 1}256

(ns, stD)←$ D1()

y← SKDF.Ev(nn, ns)

b′ ← DEVAL
2 (stD , y)

return b′ = b

EVAL(x, i) // i ∈ {1, 2}, |x| = 64

h1 ← NH.Ev(nn, x, i)

h0 ← NH.Ev(n′n, x, i)

return hb

Fig. 19. Indistinguishability of key reuse between SKDF and NH.

D Analysis of Telegram-OAEP+ public-key encryption scheme

In this section, we use “require condition” as shorthand for “if ¬condition : return ⊥”.

38 Note that this equips the adversary with more power than it would necessarily have in MTP-KE2st, so a break of
this property does not immediately translate to an attack on the protocol.

35



D.1 Birthday bound

Game Gbirthday-experiment
p,a,i,N

S← ∅

PopulateSet(p)

for τ = 0, . . . , a− 1 :

AttemptACollision()

PopulateSet(i)

return false

Function AttemptACollision()

e←$ {0, 1, . . . , N − 1}
if e ∈ S : abort(true)

S← S ∪ {e}

Function PopulateSet(count)

for i = 0, . . . , count− 1 :

e←$ {0, 1, . . . , N − 1} \ S

S← S ∪ {e}

Fig. 20. Extended birthday experiment.

Consider game Gbirthday-experiment
p,a,i,N of Fig. 20, defined for integers p, a, i, N ≥ 0. If p = i = 0, then this game

captures the standard birthday experiment, in which “a” elements are sampled one-by-one, uniformly
at random, from a set of size N. The sampled elements are stored in set S. The game returns true iff a
collision occurs. If p > 0, then the game populates the set S with p unique elements prior to starting the
standard birthday experiment. If i > 0, then every time a new element is sampled and added to the set S
within the scope of the standard birthday experiment, the game subsequently expands S with i more
unique elements (that were not yet in S). We define function

birthday-bound(prior-population, attempts, increment-per-attempt, output-space N)

and abbreviate it with bb(p, a, i, N). Let bb(p, a, i, N) = Pr[Gbirthday-experiment
p,a,i,N ] be the probability of obtain-

ing a collision in our birthday game. We upper bound it as follows:

bb(p, a, i, N) ≤
a

∑
x=1

p + (x− 1) · (i + 1)
N

=
a · (2 · p + (a− 1) · (i + 1))

2N
.

The standard birthday bound can be recovered as bb(0, a, 0, N) ≤ a·(a−1)
2N . Note that function PopulateSet

in game Gbirthday-experiment
p,a,i,N chooses unique elements by sampling them at random. The randomness here

is not necessary; any method of choosing unique elements could have been used.

We rely on our birthday bound even in cases where an adversary can replace the implementation of
PopulateSet(count) with an arbitrary method of adding count elements to the set S (e.g. adding random
elements that are not necessarily unique). Our birthday bound is still applicable in such cases, because
choosing unique elements that are not in S (as done in Gbirthday-experiment

p,a,i,N ) yields the best possible upper
bound.

D.2 Standard definitions

Public-key encryption schemes. A public-key encryption scheme PKE specifies algorithms PKE.KGen,
PKE.Enc and PKE.Dec, where PKE.Dec is deterministic. Associated to PKE is a message space PKE.MS.
The key generation algorithm PKE.KGen returns a key pair (pk, sk), where pk is a public key and sk is a
secret key. The encryption algorithm PKE.Enc takes pk and a message m ∈ PKE.MS to return a ciphertext
c. The decryption algorithm PKE.Dec takes sk, c to return m ∈ PKE.MS∪ {⊥}, where ⊥ denotes incorrect
decryption. Decryption correctness requires that PKE.Dec(sk, c) = m for all (pk, sk) ∈ [PKE.KGen()], all
m ∈ PKE.MS, and all c ∈ [PKE.Enc(pk, m)].

36



IND-CCA security of PKE. Consider game GIND-CCA
PKE,DIND-CCA

of Fig. 21, defined for a public-key encryption
scheme PKE and an adversary DIND-CCA. The advantage of DIND-CCA in breaking the IND-CCA security
of PKE is defined as AdvIND-CCA

PKE (DIND-CCA) = 2 · Pr[GIND-CCA
PKE,DIND-CCA

]− 1. Note that the game uses variable
c∗rsa to ensure that DIND-CCA makes at most a single query to its encryption oracle ENC, and that the
decryption oracle DEC does not subsequently accept the challenge ciphertext as input.

Game GIND-CCA
PKE,DIND-CCA

b←$ {0, 1} ; c∗rsa ← ⊥
(pk, sk)←$ PKE.KGen()

b′ ←$ DENC,DEC
IND-CCA(pk)

return b = b′

Oracle ENC(m0, m1)

require (c∗rsa = ⊥) ∧ (|m0| = |m1|)
require m0, m1 ∈ PKE.MS

c←$ PKE.Enc(pk, mb)

c∗rsa ← c

return c

Oracle DEC(c)

require c ̸= c∗rsa
m← PKE.Dec(sk, c)

return m

Fig. 21. IND-CCA security of public-key encryption scheme PKE.

Trapdoor function families. A trapdoor function family TDF specifies algorithms TDF.KGen, TDF.Ev
and TDF.Inv, where TDF.Ev and TDF.Inv are deterministic. Associated to TDF is a domain TDF.Dom.
The key generation algorithm TDF.KGen returns (fk, tk), where fk is a function key and tk is a trapdoor
key. The evaluation algorithm TDF.Ev takes fk and an input x ∈ TDF.Dom to return an output y ∈
TDF.Dom. The inversion algorithm TDF.Inv takes tk, y to return x ∈ TDF.Dom∪ {⊥}, where ⊥ denotes
incorrect inversion. Inversion correctness requires that TDF.Inv(tk,TDF.Ev(fk, x)) = x for all (fk, tk) ∈
[TDF.KGen()] and all x ∈ TDF.Dom.

One-wayness of TDF. Consider game GOW
TDF,FOW

of Fig. 22, defined for a trapdoor function family
TDF and an adversary FOW. The advantage of FOW against the one-wayness of TDF is defined as
AdvOW

TDF(FOW) = Pr[GOW
TDF,FOW

].

Game GOW
TDF,FOW

(fk, tk)←$ TDF.KGen()

x ←$ TDF.Dom

y← TDF.Ev(fk, x)

x′ ←$ FOW(fk, y)

return x = x′

Fig. 22. One-wayness of trapdoor function family TDF.

RSA key generators. An RSA key generator RSA.KGen is a randomised algorithm that returns integers
N, p, q, e, d. Here, p, q are primes, N = p · q is an RSA modulus, and e, d ∈ Z∗

ϕ(N) are encryption and
decryption exponents such that e · d mod ϕ(N) = 1. The outputs of an RSA key generator can be used to
define the RSA function f (x) := xe mod N and its inverse g(y) := yd mod N, where x, y ∈ Z∗N . Note that
we could have modelled this pair of functions as a trapdoor function family (modifying our definition
of TDFs to allow fk-parameterised domains). We will use RSA only to define and analyse Telegram’s
OAEP+ encryption scheme. Our treatment of Telegram’s scheme is meant to be descriptive rather than
prescriptive, so we prefer to avoid introducing an extra layer of abstraction.

37



One-wayness of RSA. Consider game GOW-RSA
RSA.KGen,FOWRSA

of Fig. 23, defined for an RSA key generator
RSA.KGen and an adversary FOWRSA. The advantage of FOWRSA against the one-wayness of RSA
is defined as AdvOW-RSA

RSA.KGen(FOWRSA) = Pr[GOW-RSA
RSA.KGen,FOWRSA

]. More precisely, this game defines one-
wayness of the RSA function that is defined based on the outputs of the RSA key generator RSA.KGen.
We require one-wayness with respect to inputs from ZN rather than Z∗N ; this is a common requirement.

Game GOW-RSA
RSA.KGen,FOWRSA

(N, p, q, e, d)←$ RSA.KGen()

pk← (N, e)

z←$ {0, . . . , N − 1}
crsa ← ze mod N

z′ ←$ FOWRSA(pk, crsa)

return z = z′

Fig. 23. One-wayness of RSA.

D.3 Shoup’s public-key encryption scheme OAEP+

In Appendix D.4 we define and analyse the public-key encryption scheme that is used in Telegram’s
MTProto. Telegram’s public-key encryption scheme can be seen (and is reported by Telegram) as a variant
of Shoup’s OAEP+ scheme [Sho02], so we call it TELEGRAM-OAEP+. The OAEP+ scheme builds an
IND-CCA secure PKE from a one-way trapdoor function in the random oracle model. In this section,
we define the OAEP+ scheme, and provide a high-level intuition behind its security proof. Our security
analysis of the TELEGRAM-OAEP+ scheme in Appendix D.4 will rely on similar high-level intuition,
although a lot of details will differ.

PKE scheme PKE-BLUEPRINT. As a warmup, consider the public-key encryption scheme that could be
defined based on the encryption algorithm PKE-BLUEPRINT.Enc in Fig. 24. Given a one-way function f
with the corresponding trapdoor function g, such a PKE scheme would use f as its public key and g as its
secret key. It would employ a symmetric encryption scheme SE (with key length SE.kl), and a hash function
H. We can instantiate PKE-BLUEPRINT with different choices of ( f , g),SE,H to recover Bellare-Rogaway’s
OAEP scheme [BR95], Shoup’s OAEP+ scheme [Sho02], or Telegram’s TELEGRAM-OAEP+ scheme.
However, some high-level security goals can be established even at the current level of abstraction.

Algorithm PKE-BLUEPRINT.Enc uses a one-time key kse for SE, i.e. it samples a fresh uniformly random
key for every encryption operation. It creates an SE ciphertext cse that encrypts x. It then creates a string
κ̃ that attempts to mask the one-time key kse by XOR-ing it with the ciphertext’s hash H(cse). The scheme
returns the result of applying the one-way function f to the concatenation cse ∥ κ̃. In order to benefit from
the one-wayness of f , both cse and κ̃ need to look uniformly random. This means that the ciphertexts of
the symmetric encryption scheme SE (with one-time keys) should look uniformly random, and the hash
function H is modelled as a random oracle. In the literature, the former requirement is often captured
using the security notion called IND$ or IND$-CPA.

If SE ciphertexts look uniformly random and H is modelled as a random oracle, then intuitively PKE-
BLUEPRINT should be at least IND-CPA secure based only on the one-wayness of f .39 However, a
black-box security reduction does not necessarily exist. Intuitively, in order to learn any information
about the encrypted x, an IND-CPA adversary would need first to recover cse ∥ κ̃ from y (inverting the

39 We discuss IND-CCA below.

38



PKE-BLUEPRINT.Enc( f , x)

kse ←$ {0, 1}SE.kl

cse ←$ SE.Enc(kse, x)

κ̃ ← H(cse)⊕ kse
y← f (cse ∥ κ̃)

return y

OAEP-BLUEPRINT.Enc( f , x)

kse ←$ {0, 1}SE.kl

cse ← G(kse)⊕ (x ∥ ⟨const. padding⟩)
κ̃ ← H(cse)⊕ kse
y← f (cse ∥ κ̃)

return y

OAEP+-BLUEPRINT.Enc( f , x)

kse ←$ {0, 1}SE.kl

cbase ← G(kse)⊕ x
tag← H′(kse ∥ x)
cse ← cbase ∥ tag

κ̃ ← H(cse)⊕ kse
y← f (cse ∥ κ̃)

return y

Fig. 24. Encryption algorithms for public-key encryption schemes PKE-BLUEPRINT, OAEP-BLUEPRINT, and
OAEP+-BLUEPRINT. Each of them uses a one-way function f as a public key (for which the corresponding trapdoor
function g exists, to be used as the secret decryption key).

one-way function), and then to compute kse ← κ̃ ⊕ H(cse). But a black-box security reduction, in the
random oracle model and for a generic choice of SE, is only guaranteed to obtain the value of cse (and not
of κ̃) from the adversary’s queries to its random oracle. To avoid this issue, the scheme PKE-BLUEPRINT
could be instantiated with a symmetric encryption algorithm SE.Enc that computes a hash of its key,
i.e. G(kse) for some hash function G. Ideally, the hash function G should be distinct from H, providing
domain separation. In an IND-CPA security proof these functions would then be modelled as two distinct
random oracles. Once the IND-CPA adversary queries both cse and kse to the corresponding random
oracles, the value of κ̃ can be computed as κ̃ ← H(cse)⊕ kse.

The necessity of non-malleable SE. In order to prove that an instantiation of PKE-BLUEPRINT is IND-
CCA secure, with a black-box reduction to the assumed one-wayness of an arbitrary (one-way) function
f , the PKE scheme must be built from SE that is non-malleable (i.e. roughly NM-CPA secure). Assume
for a contradiction that PKE-BLUEPRINT is instantiated with some f that is not one-way and SE that is
malleable. Then there exists an attack against the IND-CCA security of PKE-BLUEPRINT that relies on a
one-wayness inverter for f , yet a security reduction cannot use such an attack in a black-box way to build
a standalone one-wayness inverter for f . In particular, we assume the following as a prerequisite:

– There exists an adversary against one-wayness of f , recovering cse ∥ κ̃ from y = f (cse ∥ κ̃) when
cse ∥ κ̃ is from a distribution that is indistinguishable from uniformly random.

– There exists an adversary against non-malleability of SE, i.e. given a ciphertext cse returned by
SE.Enc(kse, x), it is able to create another ciphertext c′se ̸= cse such that SE.Dec(kse, c′se) = τ(x) for
some known non-constant function τ.

In IND-CCA security game against PKE-BLUEPRINT, consider a challenge ciphertext y returned by
oracle ENC. It is computed as follows from some plaintext x:

y← f (cse ∥ κ̃) for cse ←$ SE.Enc(kse, x) and κ̃ ← H(cse)⊕ kse.

The IND-CCA adversary could recover cse ∥ κ̃ from y by using the one-wayness inverter for f , and then
compute some c′se ̸= cse from cse by using the adversary against non-malleability of SE. The IND-CCA
adversary could then forge a new PKE-BLUEPRINT ciphertext as follows:

y′ ← f (c′se ∥ κ̃′) for κ̃′ ← κ̃ ⊕H(cse)⊕H(c′se).

If the resulting ciphertext y′ is queried to oracle DEC in the IND-CCA security game, the oracle would
return τ(x) as output. This would allow the adversary to win in the IND-CCA security game. Crucially,
this IND-CCA adversary only reveals cse by calling H(cse), i.e. it does not need to query any oracle
with κ̃ as input. This means that, in general, no black-box reduction can use this adversary to break the
one-wayness of f . (Implicit in this argument is an assumption that the adversary against non-malleability

39



of SE does not recover its secret key kse and subsequently compute its hash G(kse) in the random oracle
model. Otherwise κ̃ could still be recovered by computing κ̃ ← H(cse)⊕ kse.)

PKE scheme OAEP-BLUEPRINT. Consider the public-key encryption scheme OAEP-BLUEPRINT that
could be defined based on the encryption algorithm OAEP-BLUEPRINT.Enc in Fig. 24. It instantiates PKE-
BLUEPRINT with

SE.Enc(kse, x) := G(kse)⊕ (x ∥ ⟨const. padding⟩),

where G is a hash function that is distinct from H. This roughly captures Bellare-Rogaway’s OAEP
scheme [BR95], which was designed to provide IND-CCA security. However, note that the underlying SE
scheme is trivially malleable. So the above argument can be applied to show that there does not exist
a black-box reduction to the one-wayness of f , highlighting a gap in the initial OAEP security proof
by [BR95]. Shoup [Sho02] pointed this out and proposed the OAEP+ scheme as an improved, IND-CCA
secure variant of OAEP. Subsequent work [FOPS01] proved the IND-CCA security of OAEP in the random
oracle model assuming partial-domain one-wayness of function f . Whereas a classic result shows [RSA78]
that the partial-domain one-wayness assumption for f = RSA is equivalent to the (general) one-wayness
assumption for RSA. Together this demonstrates that the initial claim — that OAEP is IND-CCA secure
in the random oracle model based on the one-wayness of f — is true for some specific choices of f , in
spite of the above argument that highlights a gap in proving this for a generic one-way function f .

PKE scheme OAEP+-BLUEPRINT. Consider the public-key encryption scheme OAEP+-BLUEPRINT that
could be defined based on the encryption algorithm OAEP+-BLUEPRINT.Enc in Fig. 24. Here, G and H’
are hash functions that are distinct from H. This roughly captures Shoup’s OAEP+ scheme [Sho02]. Shoup
proved that OAEP+ is IND-CCA secure in the random oracle model based on the one-wayness of an
arbitrary underlying (one-way) function f . At a high level, the proof establishes the following claims:

– OAEP+ is plaintext-aware. The plaintext awareness [BR95] requires that an adversary cannot con-
struct any ciphertext unless it “knows” the underlying plaintext. Prior work shows that an IND-CPA
secure public-key encryption scheme is also IND-CCA secure if it satisfies an appropriate variant of
a plaintext awareness notion [BDPR98]. The overall proof strategy for OAEP+ can be thought of as
implicitly replicating such a result.

Shoup builds an adversary F against the one-wayness of f . It simulates the IND-CCA game for
some adversary D attacking OAEP+-BLUEPRINT. In particular, F simulates the random oracles for
D. The information F obtains from the random oracle queries allows it to perfectly simulate the
decryption oracle DEC for D as follows. Any OAEP+-BLUEPRINT ciphertext contains an integrity tag
tag = H′(kse ∥ x) that is verified during decryption. In order to construct a valid ciphertext, adversary
D must first query its oracle H′ on the corresponding input kse ∥ x. There is an injective mapping from
any string kse ∥ x to the corresponding ciphertext. So on the one hand, D is not able to reuse the same
integrity tag across different ciphertexts. And on the other hand, adversary F can iterate through all
D’s prior queries to the simulated oracle H’ in order to determine whether any ciphertext y (queried
by D into its simulated DEC oracle) is valid. If F finds some kse ∥ x that can be used to reconstruct
the queried ciphertext y, then it simply returns x as its decryption. Otherwise, F returns ⊥.

– OAEP+ is IND-CPA secure. In the first phase of the proof, we established that the one-wayness
adversaryF can perfectly simulate the decryption oracle for the IND-CCA adversaryD. In the second
phase of the proof, we need to show that F can break the one-wayness of f whenever D breaks
the IND-CPA security of OAEP+-BLUEPRINT. The IND-CPA challenge ciphertext y← f (cse ∥ κ̃) is
computed from some input string cse ∥ κ̃ that, informally, “looks” uniformly random (in ROM) unless
D can break the one-wayness of f . This allows F to replace y with its own one-wayness challenge
because it, too, is computed by applying f on a uniformly random input. The only way D might be
able to distinguish between having received such a one-wayness challenge vs. an IND-CPA challenge
ciphertext is by doing the following: (1) invert y to obtain cse and κ̃, (2) compute the one-time key
kse ← H(cse)⊕ κ̃ by querying its random oracle H on cse, and (3) compute one of the cbase or tag

40



either by querying its random oracle G on kse or by querying its random oracle H’ on kse ∥ x for some
candidate plaintext x. Adversary F would be able to recover the preimage of y based on the values
of cse and kse that it obtains in steps (2) and (3).

Shoup’s OAEP+ scheme. We reproduce the construction of OAEP+ in Definition 10 and Fig. 25, using
the original variable and function names from [Sho02]. We reproduce the accompanying security theorem
in Theorem 3.

Definition 10 (OAEP+ [Sho02]). Let n, k0, k1 ≥ 1 be integers. Let k = n + k0 + k1. Let TDF be a trapdoor
function family with TDF.Dom = {0, 1}k. Let G, H’, H be any functions such that G : {0, 1}k0 → {0, 1}n,
H′ : {0, 1}n+k0 → {0, 1}k1 , and H : {0, 1}n+k1 → {0, 1}k0 . Then PKE = OAEP+[TDF,G,H′,H, n, k0, k1] is the
public-key encryption scheme as defined in Fig. 25, with PKE.MS = {0, 1}n.

Algorithm PKE.KGen()

(fk, tk)←$ TDF.KGen()

f (·)← TDF.Ev(fk, ·) // Define f as a single-argument function.

g(·)← TDF.Inv(tk, ·) // Function g is the inverse of function f .

return ( f , g)

Algorithm PKE.Enc( f , x)

require x ∈ {0, 1}n

r ←$ {0, 1}k0

cbase ← G(r)⊕ x

tag← H′(r ∥ x)

s← cbase ∥ tag

t← H(s)⊕ r

w← s ∥ t

y← f (w)

return y

Algorithm PKE.Dec(g, y)

require y ∈ {0, 1}k

w← g(y)

cbase ← w[0 : n]

tag← w[n : n + k1]

t← w[n + k1 : n + k1 + k0]

s← cbase ∥ tag

r ← H(s)⊕ t

x ← G(r)⊕ cbase
c← tag // For consistency with [Sho02].

if c ̸= H′(r ∥ x) : return ⊥
return x

Fig. 25. Public-key encryption scheme PKE = OAEP+[TDF,G,H′,H, n, k0, k1].

Theorem 3 (OAEP+ [Sho02]). Let TDF,G,H′,H, n, k0, k1 be any entities that meet the requirements stated
in Definition 10 of OAEP+. Let PKE = OAEP+[TDF,G,H′,H, n, k0, k1], in which G,H′,H are modelled as
independent random oracles. Let DIND-CCA be any adversary against the IND-CCA security of PKE, making at
most the following number of oracle queries: nDEC to oracle DEC, qG to random oracle for function G, and qH′ to
random oracle for function H’. Then we can build an adversary FOW against the one-wayness of TDF such that

AdvIND-CCA
PKE (DIND-CCA) ≤ 2 · AdvOW

TDF(FOW) + 2 ·
(

qH′ + nDEC

2k1
+

(nDEC + 1) · qG
2k0

)
.

D.4 Public-key encryption scheme Telegram-OAEP+

To aid intuition, we first define and discuss a stylised and simplified variant of Telegram’s OAEP+ scheme.
The full scheme is given and proven below.

41



PKE scheme TELEGRAM-OAEP+-BLUEPRINT. Consider the encryption algorithm, for a PKE scheme,
defined in Fig. 26. It captures the key components of Telegram’s OAEP+ scheme at a high level. Let
TELEGRAM-OAEP+-BLUEPRINT be the public-key encryption scheme that could be formalised by defin-
ing the corresponding key generation and decryption algorithms. We now discuss it based on the informal
concepts introduced, and the intuition developed, in Appendix D.3.

TELEGRAM-OAEP+-BLUEPRINT.Enc( f , x)

require |x| = 1536

kse ←$ {0, 1}256

tag← SHA-256(kse ∥ x)
cse ← AES-256-IGE.Enc(kse, iv = 0256, x ∥ tag)

κ̃ ← SHA-256(cse)⊕ kse
y← f (κ̃ ∥ cse)

return y

Fig. 26. The encryption algorithm for public-key encryption scheme TELEGRAM-OAEP+-BLUEPRINT. It uses a
one-way function f as a public key (the corresponding trapdoor function should be used as the secret key).

TELEGRAM-OAEP+-BLUEPRINT can be thought of as an instantiation of the PKE-BLUEPRINT scheme
from Fig. 24. It uses a one-way function f as its public key. Telegram instantiates f with the RSA function.
Our IND-CCA security proof for Telegram’s OAEP+ scheme will not rely on any properties that are
specific to RSA, such as the equivalence between the one-wayness and partial-domain one-wayness
notions for RSA [RSA78, FOPS01] (which relies on the self-reducibility of RSA). So in the high-level
discussion below, we temporarily treat f as a generic one-way function.

TELEGRAM-OAEP+-BLUEPRINT encrypts 1536-bit messages. It calls SHA-256 twice, always on 1792-
bit long inputs. There is no domain separation between these two calls. The two boxed lines together
instantiate the algorithm SE.Enc of PKE-BLUEPRINT, meaning that

SE.Enc(kse, x) := AES-256-IGE.Enc(kse, iv = 0256, x ∥ SHA-256(kse ∥ x)).

Based on our informal analysis of the PKE-BLUEPRINT scheme (and the requirements towards the
underlying SE) in Appendix D.3, we now highlight the main observations that pertain to proving the
IND-CCA security of the TELEGRAM-OAEP+-BLUEPRINT scheme. We emphasise that this discussion is
purely intuitive, provided to gain insight into why an IND-CCA security proof should be possible, and
what it would entail. The intuition that we discuss below is not explicitly formalised and treated as a part
of our IND-CCA proof. It is resolved implicitly at different points throughout the sequence of games that
we define for our IND-CCA proof.

– AES-256 must be modelled as an ideal cipher. Consider a hypothetical attacker that might be able to
recover κ̃ and cse by inverting f . It could then reconstruct the one-time key kse ← SHA-256(cse)⊕ κ̃
and use it to decrypt cse, obtaining x ∥ tag. This would allow the attacker to break the IND-CPA
security of TELEGRAM-OAEP+-BLUEPRINT. Note that the attacker does not need to verify that
tag = SHA-256(kse ∥ x) is true, precluding us from using this SHA-256 call (when SHA-256 is modelled
as a random oracle) to construct an adversary against the one-wayness of f in a black-box way. In
order to enable the security reduction, we need to model AES-256 as an ideal cipher so that the
attacker is forced to reveal the value of kse when it decrypts cse.

– The distribution of function f ’s inputs κ̃ ∥ cse. In order to use the assumed one-wayness of f , at some
point in the proof we need to be able to show that its input κ̃ ∥ cse comes from a distribution that is
computationally indistinguishable from the uniformly random distribution. In our IND-CCA security

42



proof of Telegram’s full scheme, we will model SHA-256 as a random oracle and AES-256 as an ideal
cipher. Observe that the one-time key kse that is sampled in the encryption algorithm is unlikely to
collide with any previously used key. This means that the values of tag and cse (and subsequently also
the value of κ̃) will be sampled uniformly at random (by the corresponding idealised oracles) during
the encryption operation. Similarly to Shoup’s proof for OAEP+ [Sho02], our proof will show that the
IND-CCA adversary is unlikely to query its idealised oracles on inputs that were used to produce the
challenge ciphertext. This will allow us to eventually treat the string κ̃ ∥ cse used for the challenge
ciphertext as being uniformly random, sampled independently from adversary’s view of the game.

– Plaintext-awareness of TELEGRAM-OAEP+-BLUEPRINT. Scheme TELEGRAM-OAEP+-BLUEPRINT
is plaintext-aware in the sense that any ciphertext has to contain a valid tag that is computed as a
hash over the input kse ∥ x. And each pair kse, x uniquely corresponds to a single valid ciphertext.
Similarly to Shoup’s proof for OAEP+ [Sho02], this will allow the one-wayness adversary in our
proof to perfectly simulate the decryption oracle for the IND-CCA adversary. (But some care needs to
be taken in order to appropriately resolve the details that arise due to the lack of domain separation
in Telegram’s scheme.)

– Non-malleability of SE. In Appendix D.3 we roughly argued that a black-box reduction from IND-
CCA security of PKE-BLUEPRINT to the one-wayness of f could exist only if SE is non-malleable.
More precisely, we pointed out that a black-box reduction could exist if an adversary against non-
malleability of SE could only succeed after computing a hash of SE’s secret key kse (i.e. querying
the corresponding random oracle on kse). We now argue that the SE scheme used in Telegram, as
defined above, satisfies this property. This is true in spite of the IGE block cipher mode of operation
on its own being trivially malleable [Jut00]. In particular, it is hard to forge a new SE ciphertext
cse = AES-256-IGE.Enc(kse, 0256, x ∥ tag) for tag = SHA-256(kse ∥ x) without explicitly calling SHA-256
to compute tag first. The string kse ∥ x uniquely determines the value of cse, so an attacker cannot
reuse the entirety of tag = SHA-256(kse ∥ x) from a prior ciphertext. Instead the attacker would have
to find some values (tag, kse, x) such that tag = SHA-256(kse ∥ x) holds, without explicitly computing
SHA-256(kse ∥ x). That is implausible.

Detailed design of Telegram-OAEP+. We formally define Telegram’s OAEP+ in Definition 11.

Definition 11. Let RSA.KGen be an RSA key generator that always returns N such that 22047 < N < 22048. Let
M⊆ ⋃ℓ≤1152{0, 1}ℓ. Let RemovePadding : {0, 1}1536 →M. Let max-attempts ≥ 1 be an integer. Then PKE =
TELEGRAM-OAEP+[RSA.KGen,M,RemovePadding,max-attempts] is the public-key encryption scheme as
defined in Fig. 27, with PKE.MS =M.

Remark 1. In our definition, we do not require correctness for all choices of pairs RemovePadding andM,
i.e. RemovePadding might not interact correctly withM. Telegram instantiates Definition 11 with a correct
pair and our definition is not intended to capture more than this instantiation.

Remark 2. Our introduction of max-attempts is a simplification of the actual Telegram scheme which will
continue to resample forever. Picking an appropriate value of max-attempts gives a simplification that
has a negligible effect on correctness and security.

Theorem 4. Let RSA.KGen,M,RemovePadding,max-attempts be any entities that meet the requirements stated
in Definition 11 of TELEGRAM-OAEP+. Let PKE = TELEGRAM-OAEP+[RSA.KGen,M,RemovePadding,
max-attempts], in which SHA-256 is modelled as a random oracle and AES-256 is modelled as an ideal cipher. Let
DIND-CCA be any adversary against the IND-CCA security of PKE, making at most the following number of oracle
queries: nENC to oracle ENC, nDEC to oracle DEC, nH to random oracle H, and nIC jointly to ideal-cipher oracles
IC and IC−1. Assume that40 max-attempts = 121, and nENC, nDEC, nH, nIC ≤ 2126 such that nDEC · nH ≤ 2134,
40 We only use these constraints to derive a sample numeric bound below. The proof allows to choose arbitrary

constraints.

43



PKE.Enc(pk, m)

1 : require m ∈ M
2 : (N, e)← pk ; attempt← 1

3 : K←$ {0, 1}256

4 : pad←$ {0, 1}1536−|m|

5 : mpadded ← m ∥ pad
6 : h← SHA-256(K ∥ mpadded)

7 : pige ← reverse(mpadded) ∥ h

8 : cige ← AES-256-IGE.Enc(K, 0256, pige)
9 : r ← SHA-256(cige)⊕ K

10 : prsa ← r ∥ cige
11 : z← prsa // Parse prsa as an integer.

12 : if z ̸∈ ZN :

13 : attempt← attempt+ 1

14 : if attempt > max-attempts :

15 : return ( , m)

16 : goto line 3

17 : crsa ← ze mod N
18 : return crsa

PKE.KGen()

1 : (N, p, q, e, d)←$ RSA.KGen()

2 : pk← (N, e) ; sk← (N, d)
3 : return (pk, sk)

PKE.Dec(sk, crsa)

1 : (N, d)← sk
2 : if crsa ̸∈ ZN : return ⊥
3 : z← (crsa)d mod N
4 : prsa ← z // Parse z as a 2048-bit string.

5 : r ← prsa[0 : 256]

6 : cige ← prsa[256 : 2048]

7 : K← SHA-256(cige)⊕ r

8 : pige ← AES-256-IGE.Dec(K, 0256, cige)
9 : mpadded ← reverse(pige[0 : 1536])

10 : h← pige[1536 : 1792]

11 : if h ̸= SHA-256(K ∥ mpadded) : return ⊥
12 : m← RemovePadding(mpadded)

13 : return m

Fig. 27. Public-key encryption scheme PKE = TELEGRAM-OAEP+[RSA.KGen,M,RemovePadding,max-attempts].

and that RSA.KGen returns 22047 < N < 22048 − 2256. Then we can build an adversary FOWRSA against the
one-wayness of RSA such that

AdvIND-CCA
PKE (DIND-CCA) ≤ 2 · AdvOW-RSA

RSA.KGen(FOWRSA) + 2−116.

Our proof first rewrites the encryption oracle ENC to return a ciphertext that is obtained by applying the
RSA function on a uniformly random integer from ZN . In particular, we manage to get rid of the rejection
sampling iterations along the way. In order to maintain equivalence between our games (i.e. ensure the
consistency of adversary’s view between these games), we temporarily program the idealised oracles in
a way that they map the output of the encryption oracle to an appropriate challenge message mb. This
process is similar to the random oracle programming that is done in games 4–5 of Shoup’s proof for
OAEP+ [Sho02]. Our proof requires a lot more steps because of the necessity to appropriately resolve the
rejection sampling and the lack of domain separation between different random oracle calls.

Having simplified the encryption oracle, we then use the plaintext-awareness of Telegram’s OAEP+
scheme in order to rewrite the decryption oracle DEC in a way that a one-wayness adversary can perfectly
simulate it for the IND-CCA adversary.

Proof. This proof uses games G0 through G31, split across the following figures:

44



Games Figure
G0 Fig. 29
G1–G11 Fig. 30
G12–G13 Fig. 31
G14–G18 Fig. 32
G19–G20 Fig. 33
G21–G26 Fig. 34
G27–G29 Fig. 35
G30–G31 Fig. 36

In a game, the code highlighted in gray is generally equivalent to the code from the previous previous. It
often expands the definition of some algorithm or oracle, or rewrites something in an alternative way.
The code highlighted in green is generally added for the transitions between future games. We build
adversary FOWRSA in Fig. 37. In this adversary, the code highlighted in orange modifies the simulated
game G31.

Below we will show that Pr[G0] = Pr[GIND-CCA
PKE,DIND-CCA

]. This allows to express the advantage of adversary
DIND-CCA as follows:

AdvIND-CCA
PKE (DIND-CCA) = 2 · Pr[G0]− 1 = 2 ·

(
30

∑
i=0

(Pr[Gi]− Pr[Gi+1]) + Pr[G31]

)
− 1.

The probability upper bounds for all transitions between games, as well as Pr[G31], are summarised
in Fig. 28. We will justify each of these probabilities as we move through the proof steps. For the constraints
specified in Theorem 4 (i.e. max-attempts = 121, and nENC, nDEC, nH, nIC ≤ 2126 such that nDEC · nH ≤ 2134,
and RSA.KGen returns 22047 < N < 22048 − 2256), each non-zero probability term for transitions in Fig. 28
can be trivially upper-bounded by 2−121. There are a total of 10 transitions like that, so we have

AdvIND-CCA
PKE (DIND-CCA) ≤ 2 · (AdvOW-RSA

RSA.KGen(FOWRSA) + 10 · 2−121)

< 2 · AdvOW-RSA
RSA.KGen(FOWRSA) + 2−116.

This justifies the bound in the theorem statement. We now explain each step of the proof.

Analysis of G0. This game, given in Fig. 29, expands the definition of Telegram’s PKE scheme into
the IND-CCA game in the RO and the ICM models. We are also simultaneously expanding the code of
the (ideal cipher based) IGE encryption algorithm inside oracle ENC. The RO and the ICM oracles are
implemented via lazy sampling. The object IGEIC,IC−1

in oracle DEC denotes the IGE block cipher mode
of operation that uses the ideal cipher oracle IC as the underlying block cipher and IC−1 as its inverse. In
the decryption oracle DEC, we call IGEIC,IC−1

.Dec(K, 0256, cige) to evaluate the IGE decryption algorithm.
Game G0 is equivalent to game GIND-CCA

PKE,DIND-CCA
by design, so

Pr[G0] = Pr[GIND-CCA
PKE,DIND-CCA

].

Note that upon exceeding max-attempts of rejection sampling iterations, oracle ENC returns ( , mb). As
discussed above, we introduced the max-attempts constant as a simplification of the actual Telegram
scheme (in which the rejection sampling runs forever, until success). We chose to unambiguously leak
the challenge message to the adversary upon exceeding max-attempts. As a result, an adversary can
“break” the security of the scheme for free whenever its correctness fails. So in our analysis, and in
particular – for our final security bound, it is sufficient to choose the smallest value of max-attempts that
provides a desirable security bound. On the flip side, picking the value of max-attempts that is too large,
would inherently worsen the security bound because an excessive number of estimated rejection sampling
iterations would lead to an increased chance of collisions between various random oracle and ideal cipher

45



Pr[G0] = Pr[GIND-CCA
PKE,DIND-CCA

]

Pr[G0]− Pr[G1] ≤ 0.

Pr[G1]− Pr[G2] ≤ Pr[badG2
0 ] <

max-attempts · (nDEC + nIC +max-attempts)

2256 .

Pr[G2]− Pr[G3] ≤ 0.

Pr[G3]− Pr[G4] ≤ Pr[badG4
1 ] < 2−121.

Pr[G4]− Pr[G5] ≤ Pr[badG5
2 ] < 2−121.

Pr[G5]− Pr[G6] ≤ Pr[badG6
3 ] <

max-attempts · (nH + nDEC +max-attempts)

21791 .

Pr[G6]− Pr[G7] ≤ 0.

Pr[G7]− Pr[G8] ≤ 0.

Pr[G8]− Pr[G9] ≤ Pr[badG9
4 ] < 2−max-attempts.

Pr[G9]− Pr[G10] ≤ Pr[badG10
5 ] ≤ max-attempts

2384 .

Pr[G10]− Pr[G11] ≤ 0.

Pr[G11]− Pr[G12] ≤ 0.

Pr[G12]− Pr[G13] ≤ 0.

Pr[G13]− Pr[G14] ≤ 0.

Pr[G14]− Pr[G15] ≤ Pr[badG15
6 ] <

max-attempts · (nH + nDEC +max-attempts)

min(21790, 22046 − N)
.

Pr[G15]− Pr[G16] ≤ Pr[badG16
7 ] <

max-attempts · (nDEC + nIC)

2255 .

Pr[G16]− Pr[G17] ≤ Pr[badG17
8 ] ≤ 0.

Pr[G17]− Pr[G18] ≤ 0.

Pr[G18]− Pr[G19] ≤ 0.

Pr[G19]− Pr[G20] ≤ 0.

Pr[G20]− Pr[G21] ≤ 0.

Pr[G21]− Pr[G22] ≤ 0.

Pr[G22]− Pr[G23] ≤ 0.

Pr[G23]− Pr[G24] ≤ 0.

Pr[G24]− Pr[G25] ≤ 0.

Pr[G25]− Pr[G26] ≤ 0.

Pr[G26]− Pr[G27] ≤ 0.

Pr[G27]− Pr[G28] ≤ Pr[badG28
9 ] ≤ nDEC · (nH + 1)

2256 .

Pr[G28]− Pr[G29] ≤
nDEC + nIC

2256 .

Pr[G29]− Pr[G30] ≤ 0.

Pr[G30]− Pr[G31] ≤ Pr[badG31
10 ] ≤ AdvOW-RSA

RSA.KGen(FOWRSA).

Pr[G31] =
1
2

.

Fig. 28. The probability upper bounds for transitions between games G0 through G31 for the proof of Theorem 4.

46



outputs. However, we emphasise that this is only an issue – and an artificial one at that – if the proof
uses an excessive number of expected rejection sampling iterations, i.e. many more than would have
happened in practice. We argue that our approach to modelling max-attempts, as described above, allows
to choose a somewhat accurate expected number of iterations, and hence to arrive at a reasonable overall
security upper bound.

Analysis of G0 → G1. This game only changes the encryption oracle ENC, the other oracles and the
main game remain the same. The changes to ENC are given in G1. The games G0 and G1 are functionally
equivalent. The latter adds some code, highlighted in green, that is not yet used for anything and does
not affect the functionality of the oracle. It also rewrites one call to the ideal cipher (highlighted in gray)
into a conditional statement, where both branches contain the same call. This again means there is no
change of functionality of the oracle. We have

Pr[G0] = Pr[G1].

Analysis of G1 → G2. Consider game G2. Adversary DIND-CCA makes at most a single query to oracle
ENC. Prior to calling ENC, the adversary can make at most nDEC queries to oracle DEC and at most nIC
queries to oracles IC, IC−1. Each query to DEC, IC, or IC−1 can add at most a single key K ∈ {0, 1}256 to
the set SIC. So when DIND-CCA queries oracle ENC, the set SIC might contain at most nDEC + nIC distinct
keys. Oracle ENC iteratively samples at most max-attempts new keys, checking each key for a collision
prior to adding it to SIC. The flag badG2

0 is set if a collision occurs. The probability of obtaining a collision
is ≤ bb(nDEC + nIC,max-attempts, 0, 2256) and we have

Pr[G1]− Pr[G2] ≤ Pr[badG2
0 ] ≤ bb(nDEC + nIC,max-attempts, 0, 2256)

≤ max-attempts · (2 · nDEC + 2 · nIC +max-attempts− 1)
2257

<
max-attempts · (nDEC + nIC +max-attempts)

2256 .

Analysis of G2 → G3. Line 16 of oracle ENC in game G2 evaluates the instruction

yi ← IC(K, ui)⊕ xi−1

in the conditional branch where AK[ui] = ⊥ was established to be true. Under this condition, the code
underlying the call to IC(K, ui) can be expanded to rewrite line 16 in an equivalent way:

vi ←$ {0, 1}128 \ RK ; yi ← vi ⊕ xi−1 ; AddRelationToIC(K, ui, vi).

Game G3 extends this to first run

yi ←$ {0, 1}128 ; vi ← yi ⊕ xi−1.

If vi ̸∈ RK, then AddRelationToIC(K, ui, vi) is called next. Otherwise, the above (originally expanded)
code is used as the fallback. Games G2 and G3 are functionally equivalent. In particular, the pair (yi, vi) is
sampled from the same distribution in these games. We have

Pr[G2] = Pr[G3].

Analysis of G3 → G4. Consider game G4. Adversary DIND-CCA makes at most a single query to oracle
ENC. Oracle ENC runs for at most max-attempts iterations. It guarantees that in each iteration the ideal
cipher is used with a distinct, fresh key K. For a single key, at most 14 values v1, v2, . . . , v14 are sampled

47



Game G0

1 : b←$ {0, 1} ; c∗rsa ← ⊥
2 : SIC ← ∅ ; D ← ∅ ; R ← ∅

3 : (N, p, q, e, d)←$ RSA.KGen()

4 : pk← (N, e)

5 : b′ ←$ DENC,DEC,H,IC,IC−1

IND-CCA (pk)

6 : return b = b′

Oracle ENC(m0, m1)

1 : require (c∗rsa = ⊥) ∧ (|m0| = |m1|)
2 : require m0, m1 ∈ M
3 : attempt← 1

4 : K←$ {0, 1}256

5 : pad←$ {0, 1}1536−|mb |

6 : mpadded ← mb ∥ pad
7 : h← H(K ∥ mpadded)

8 : pige ← reverse(mpadded) ∥ h
9 : // Parse into 128-bit blocks.

10 : x0 ← 0128 ; y0 ← 0128

11 : x1 ∥ . . . ∥ x14 ← pige
12 : for i = 1, . . . , 14 :

13 : ui ← xi ⊕ yi−1

14 : yi ← IC(K, ui)⊕ xi−1

15 : cige ← y1 ∥ . . . ∥ y14

16 : r ← H(cige)⊕ K
17 : prsa ← r ∥ cige
18 : z← prsa // Parse prsa as an integer.

19 : if z ̸∈ ZN :

20 : attempt← attempt+ 1

21 : if attempt > max-attempts :

22 : c∗rsa ← ( , mb)

23 : return c∗rsa
24 : goto line 4

25 : c∗rsa ← ze mod N
26 : return c∗rsa

Oracle DEC(crsa)

1 : require (crsa ̸= c∗rsa) ∧ (crsa ∈ ZN)

2 : z← (crsa)d mod N
3 : prsa ← z // Parse z as a 2048-bit string.

4 : r ∥ cige ← prsa // s.t. |r| = 256, |cige| = 1792.

5 : K← H(cige)⊕ r

6 : pige ← IGEIC,IC−1
.Dec(K, 0256, cige)

7 : mpadded ← reverse(pige[0 : 1536])

8 : h← pige[1536 : 1792]

9 : if h ̸= H(K ∥ mpadded) : return ⊥
10 : m← RemovePadding(mpadded)

11 : return m

Random oracle H(a) for a ∈ {0, 1}1792

1 : if T[a] = ⊥ : T[a]←$ {0, 1}256

2 : return T[a]

Ideal cipher IC(K, u) for K ∈ {0, 1}256, u ∈ {0, 1}128

1 : if AK[u] = ⊥ :

2 : v←$ {0, 1}128 \ RK

3 : AddRelationToIC(K, u, v)
4 : return AK[u]

Ideal cipher IC−1(K, v) for K ∈ {0, 1}256, v ∈ {0, 1}128

1 : if BK[v] = ⊥ :

2 : u←$ {0, 1}128 \ DK

3 : AddRelationToIC(K, u, v)
4 : return BK[v]

Function AddRelationToIC(K, u, v)

1 : SIC ← SIC ∪ {K}
2 : AK[u]← v ; BK[v]← u
3 : DK ← DK ∪ {u}
4 : RK ← RK ∪ {v}

Fig. 29. Game G0 for the proof of Theorem 4.

48



Games G1–G7 : Oracle ENC(m0, m1)

1 : require (c∗rsa = ⊥) ∧ (|m0| = |m1|)
2 : require m0, m1 ∈ M
3 : attempt← 1 ; K←$ {0, 1}256

4 : if K ∈ SIC :

5 : bad0 ← true

6 : abort(false) // G2–G7

7 : pad←$ {0, 1}1536−|mb |

8 : mpadded ← mb ∥ pad
9 : h← H(K ∥ mpadded)

10 : pige ← reverse(mpadded) ∥ h

11 : x0 ← 0128 ; y0 ← 0128

12 : x1 ∥ . . . ∥ x14 ← pige // Parse into 128-bit blocks.

13 : for i = 1, . . . , 14 :

14 : ui ← xi ⊕ yi−1

15 : if AK[ui] = ⊥ :

16 : yi ← IC(K, ui)⊕ xi−1 // G1-G2

17 : yi ←$ {0, 1}128 ; vi ← yi ⊕ xi−1 // G3-G7

18 : if vi ∈ RK : // G3-G7

19 : bad1 ← true // G3-G7

20 : vi ←$ {0, 1}128 \ RK ; yi ← vi ⊕ xi−1 // G3

21 : AddRelationToIC(K, ui, vi) // G3-G7

22 : else : // AK [ui ] ̸= ⊥

23 : bad2 ← true

24 : yi ← IC(K, ui)⊕ xi−1 // G1-G4

25 : yi ←$ {0, 1}128 ; vi ← yi ⊕ xi−1 // G5-G7

26 : AddRelationToIC(K, ui, vi) // G5-G7

27 : cige ← y1 ∥ . . . ∥ y14

28 : if T[cige] ̸= ⊥ :

29 : bad3 ← true

30 : abort(false) // G6-G7

31 : r ← H(cige)⊕ K // G1-G6

32 : r ←$ {0, 1}256 ; T[cige]← r⊕ K // G7

33 : prsa ← r ∥ cige
34 : z← prsa // Parse prsa as an integer.

35 : if z ̸∈ ZN :

36 : attempt← attempt+ 1

37 : if attempt > max-attempts :

38 : c∗rsa ← ( , mb) ; return c∗rsa
39 : goto line 3

40 : c∗rsa ← ze mod N
41 : return c∗rsa

Games G8–G11 : Oracle ENC(m0, m1)

1 : require (c∗rsa = ⊥) ∧ (|m0| = |m1|)
2 : require m0, m1 ∈ M
3 : attempt← 1

4 : prsa ←$ {0, 1}2048

5 : z← prsa // Parse prsa as an integer.

6 : r ∥ cige ← prsa // s.t. |r| = 256, |cige| = 1792.

7 : // Parse into 128-bit blocks.

8 : y1 ∥ . . . ∥ y14 ← cige
9 : if T[cige] ̸= ⊥ : abort(false) // G11

10 : K←$ {0, 1}256

11 : T[cige]← r⊕ K // G11

12 : if K ∈ SIC : abort(false)

13 : pad←$ {0, 1}1536−|mb |

14 : mpadded ← mb ∥ pad
15 : if cige = K ∥ mpadded :

16 : bad5 ← true

17 : abort(false) // G10–G11

18 : h← H(K ∥ mpadded)

19 : pige ← reverse(mpadded) ∥ h

20 : x0 ← 0128 ; y0 ← 0128

21 : // Parse into 128-bit blocks.

22 : x1 ∥ . . . ∥ x14 ← pige
23 : for i = 1, . . . , 14 :

24 : ui ← xi ⊕ yi−1

25 : vi ← yi ⊕ xi−1

26 : AddRelationToIC(K, ui, vi)

27 : if T[cige] ̸= ⊥ : abort(false) // G8–G10

28 : T[cige]← r⊕ K // G8–G10

29 : if z ̸∈ ZN :

30 : attempt← attempt+ 1

31 : if attempt > max-attempts :

32 : bad4 ← true

33 : c∗rsa ← ( , mb) // G8

34 : return c∗rsa // G8

35 : abort(false) // G9–G11

36 : goto line 4

37 : c∗rsa ← ze mod N
38 : return c∗rsa

Fig. 30. Games G1–G11 for the proof of Theorem 4.

49



uniformly at random from the set {0, 1}128, in line 17 of oracle ENC in game G4. Each value is assigned
as an output of the ideal cipher (for distinct inputs u1, u2, . . . , u14). The flag bad

G4
1 is set if a collision

is obtained between the sampled vi values, in any of the max-attempts iterations (each constituting an
independent experiment). We have

Pr[G3]− Pr[G4] ≤ Pr[badG4
1 ] ≤ max-attempts · bb(0, 14, 0, 2128) ≤ 91

2128 < 2−121.

Analysis of G4 → G5. Consider game G5. Adversary DIND-CCA makes at most a single query to oracle
ENC. Oracle ENC runs for at most max-attempts iterations. It guarantees that in each iteration the ideal
cipher is used with a distinct, fresh key K. For a single key, consider the 14 values u1, u2, . . . , u14 that are
calculated in line 14 of oracle ENC in game G5 as follows:

ui ← xi ⊕ yi−1.

Note that y1, y2, . . . , y13 are sampled uniformly at random, and independently of the corresponding xi.
So each of u2, u3, . . . , u14 can likewise be seen as independent, uniformly random value from {0, 1}128.
The flag badG5

2 is set if a collision is obtained between u1, u2, . . . , u14, in any of the max-attempts iterations
(each constituting an independent experiment). We have

Pr[G4]− Pr[G5] ≤ Pr[badG5
2 ] ≤ max-attempts · bb(0, 14, 0, 2128) ≤ 91

2128 < 2−121.

Analysis of G5 → G6. Consider game G6. Adversary DIND-CCA makes at most a single query to oracle
ENC. Prior to calling ENC, the adversary can make at most nH queries to oracle H and at most nDEC

queries to oracle DEC. Each query to H can populate at most 1 empty entry of the random oracle table
T, and each query to DEC can populate at most 2 empty entries (via underlying queries to H). So when
DIND-CCA queries oracle ENC, the table T might contain at most nH + 2 · nDEC non-empty entries. Oracle
ENC runs for at most max-attempts iterations. In each iteration, ENC first queries H(K ∥ mpadded), then
samples a uniformly random cige ∈ {0, 1}1792 (i.e. by concatenating the 128-bit strings y1, y2, . . . , y14 that
were sampled independently, and uniformly at random), checks that the table entry T[cige] is empty, and
finally queries H(cige). The flag badG6

3 is set if a collision occurs, i.e. if some T[cige] was already initialised.
We have

Pr[G5]− Pr[G6] ≤ Pr[badG6
3 ] ≤ bb(nH + 2 · nDEC + 1,max-attempts, 1, 21792)

≤ max-attempts · (nH + 2 · nDEC + 1 +max-attempts− 1)
21792

<
max-attempts · (nH + nDEC +max-attempts)

21791 .

Analysis of G6 → G7. This game simply inlines the random oracle call into ENC which does not alter
behaviour. We have

Pr[G6] = Pr[G7].

Analysis of G7 → G8. Observe that the following code is evaluated throughout game G7:

for i = 1, . . . , 14 : yi ←$ {0, 1}128

cige ← y1 ∥ . . . ∥ y14

r ←$ {0, 1}256

prsa ← r ∥ cige
z← prsa // Parse prsa as an integer.

50



We rewrite this code in a functionally equivalent way in lines 4 to 8 of game G8:

prsa ←$ {0, 1}2048

z← prsa // Parse prsa as an integer.

r ∥ cige ← prsa // s.t. |r| = 256, |cige| = 1792.

y1 ∥ . . . ∥ y14 ← cige // Parse into 128-bit blocks.

The rest of game G7’s code is rewritten unchanged in game G8 (i.e. the order of the instructions is kept
intact, not just the instructions themselves). It follows that games G7 and G8 are functionally equivalent,
and

Pr[G7] = Pr[G8].

Analysis of G8 → G9. Consider game G9. Adversary DIND-CCA makes at most a single query to
oracle ENC. The oracle ENC repeatedly samples prsa ←$ {0, 1}2048 until its integer representation z is in
ZN , or until max-attempts consecutive prsa values were sampled and discarded. If the latter occurred,
then the flag badG9

4 is set and the game aborts, returning false. The probability of this happening is(
22048−N

22048

)max-attempts
and we have

Pr[G8]− Pr[G9] ≤ Pr[badG9
4 ] ≤

(
22048 − N

22048

)max-attempts

<

(
22047

22048

)max-attempts

= 2−max-attempts.

Analysis of G9 → G10. Consider game G10. Adversary DIND-CCA makes at most a single query to oracle
ENC. Oracle ENC runs for at most max-attempts iterations. In each iteration a random padding is sampled
and appended to the challenge message as follows:

pad←$ {0, 1}1536−|mb |

mpadded ← mb ∥ pad

The flag bad
G10
5 is set if the equality cige = K ∥ mpadded is satisfied for the previously chosen values cige

and K. The message space of PKE contains strings of length at most 1152 bits. It follows that

Pr[G9]− Pr[G10] ≤ Pr[badG10
5 ] ≤ max-attempts

2384 .

Analysis of G10 → G11. Game G11 is obtained from game G10 by moving the adjacent oracle DEC
instructions

if T[cige] ̸= ⊥ : abort(false)
T[cige]← r⊕ K

from lines 27 to 28, up to line 9 and line 11 respectively. A single new entry of the random oracle table T
might get initialised between these lines when the instruction H(K ∥ mpadded) is evaluated in line 18 of
oracle DEC. However, in both games this random oracle call can be reached only if K ∥ mpadded is distinct
from cige. It follows that the input-output behaviour of oracle ENC is the same across games G10 and G11,
and

Pr[G10] = Pr[G11].

Analysis of G11 → G12. Game G12 rewrites game G11 to add bookkeeping tables ige-ciphertext-to-key-map
and ige-key-to-data-map. In game G12, we set ige-ciphertext-to-key-map[cige]← (r, K) whenever oracle ENC
sets T[cige]← r⊕ K. And we set ige-key-to-data-map[K]← (pige, cige) whenever oracle ENC programs the

51



ideal cipher to be consistent with cige = IGEIC,IC−1
.Enc(K, 0256, pige). The code that programs the ideal

cipher is now moved out into a separate function EmbedChallengeMessage. This function takes the key K
as input, reads the corresponding plaintext-ciphertext pair (pige, cige) from ige-key-to-data-map[K], and
then programs the random oracle in the same way as previously done in G11. Note that within a single
ENC query, the table entry ige-ciphertext-to-key-map[cige] is initialised iff T[cige] is initialised during the
same query. Similarly, within a single ENC query, the table entry ige-key-to-data-map[K] is initialised iff K
gets added to the set SIC during the same query. Game G12 contains conditions checking whether the
entries ige-ciphertext-to-key-map[cige] and ige-key-to-data-map[K] are initialised. These conditions do not
affect the functionality of the game because they are always checked right after the equivalent conditions
regarding T[cige] being initialised, or a key belonging to the set SIC. Games G11 and G12 are functionally
equivalent, so

Pr[G11] = Pr[G12].

Analysis of G12 → G13. Game G13 rewrites game G12 to no longer perform the random-oracle and
ideal-cipher programming during calls to its oracle ENC. In particular, the oracle ENC instructions
T[cige]← r⊕ K in line 12 and EmbedChallengeMessage(K) in line 22 of game G12 – are not kept in game
G13. Instead game G13 programs its idealised oracles lazily. It is done when the corresponding oracle is
queried on an input that is not yet initialised, but for which there exists a table entry (i.e. ige-ciphertext-
to-key-map or ige-key-to-data-map) with instructions on how it should be initialised. The lazy sampling
can be done because in game G12, except for the RO and IC oracles themselves, only oracle ENC directly
accesses the RO table T and the IC tables A, B. Oracle ENC only writes into these tables, not reads from
them. And it only writes into them if the corresponding entry is not yet initialised. Games G12 and G13
are functionally equivalent, and

Pr[G12] = Pr[G13].

Analysis of G13 → G14. Games G13 and G14 are equivalent. In particular, game G14 rewrites G13 to
add conditional statements inside oracle H and function EmbedChallengeMessage. All branches of the
conditional statement in H contain a single instruction T[a]← r⊕ K, which is consistent with game G13.
Both branches of the conditional statement in EmbedChallengeMessage do nothing. We have

Pr[G13] = Pr[G14].

Analysis of G14 → G15. Consider game G15. The flag bad
G15
6 is set only when both of the following

conditions are true: (1) oracle H was called on some value a ̸= c∗ige for which T[a] = ⊥ and ige-ciphertext-
to-key-map[a] ̸= ⊥, and (2) the table entry ige-ciphertext-to-key-map[a] = (r, K) contains K ̸∈ SIC. The first
condition means that H was queried on the suffix a = cige of some prsa that was previously sampled and
discarded in oracle ENC, due to the integer representation of prsa being outside ZN . The second condition
means that DIND-CCA did not simply obtain this value from the corresponding table entry ige-ciphertext-
to-key-map that contains the discarded cige. Together it effectively means that DIND-CCA simply guessed
such cige (and queried it to H directly, or triggered such a call to H from another oracle). Note that we do
not need to analyse the possibility of ENC having sampled distinct prsa values that have the same suffix.
We avoid this case by keeping the following conditional statement in ENC:

if T[cige] ̸= ⊥ : abort(false).

There are 22048 − N distinct values prsa ∈ {0, 1}2048 whose integer representation is not in ZN . Amongst
all such values, there are min(21792, 22048− N) distinct 1792-bit suffixes. The most frequent suffix appears⌈

22048−N
min(21792,22048−N)

⌉
times. So the probability of guessing a single a priori chosen suffix is at most⌈

22048−N
ψ

⌉
22048 − N

≤
22048−N

ψ + 1

22048 − N
=

1
ψ
+

1
22048 − N

≤ 2
ψ

.

52



Games G12–G13

1 : b←$ {0, 1} ; c∗rsa ← ⊥ ; SIC ← ∅

2 : (N, p, q, e, d)←$ RSA.KGen() ; pk← (N, e)

3 : b′ ←$ DENC,DEC,H,IC,IC−1

IND-CCA (pk)

4 : return b = b′

Oracle ENC(m0, m1)

1 : require (c∗rsa = ⊥) ∧ (|m0| = |m1|)
2 : require m0, m1 ∈ M
3 : attempt← 1

4 : prsa ←$ {0, 1}2048

5 : z← prsa // Parse prsa as an integer.

6 : r ∥ cige ← prsa // s.t. |r| = 256, |cige| = 1792.

7 : if T[cige] ̸= ⊥ : abort(false)

8 : if ige-ciphertext-to-key-map[cige] ̸= ⊥ :

9 : abort(false)

10 : K←$ {0, 1}256

11 : ige-ciphertext-to-key-map[cige]← (r, K)
12 : T[cige]← r⊕ K // G12

13 : if K ∈ SIC : abort(false)

14 : if ige-key-to-data-map[K] ̸= ⊥ :

15 : abort(false)

16 : pad←$ {0, 1}1536−|mb |

17 : mpadded ← mb ∥ pad
18 : if cige = K ∥ mpadded : abort(false)

19 : h← H(K ∥ mpadded)

20 : pige ← reverse(mpadded) ∥ h
21 : ige-key-to-data-map[K]← (pige, cige)
22 : EmbedChallengeMessage(K) // G12

23 : if z ̸∈ ZN :

24 : attempt← attempt+ 1

25 : if attempt > max-attempts :

26 : abort(false)

27 : goto line 4

28 : c∗rsa ← ze mod N
29 : return c∗rsa

Oracle DEC(crsa)
// This oracle is identical to the

// corresponding oracle in game G0 of Fig. 29.

Random oracle H(a) for a ∈ {0, 1}1792

1 : if T[a] = ⊥ :

2 : if ige-ciphertext-to-key-map[a] ̸= ⊥ :

3 : T[a]←$ {0, 1}256 // G12

4 : (r, K)← ige-ciphertext-to-key-map[a] // G13

5 : T[a]← r⊕ K // G13

6 : else : // ige-ciphertext-to-key-map[a] = ⊥

7 : T[a]←$ {0, 1}256

8 : return T[a]

Ideal cipher IC(K, u) for K ∈ {0, 1}256, u ∈ {0, 1}128

1 : EmbedChallengeMessage(K) // G13

2 : if AK[u] = ⊥ :

3 : v←$ {0, 1}128 \ RK

4 : AddRelationToIC(K, u, v)
5 : return AK[u]

Ideal cipher IC−1(K, v) for K ∈ {0, 1}256, v ∈ {0, 1}128

1 : EmbedChallengeMessage(K) // G13

2 : if BK[v] = ⊥ :

3 : u←$ {0, 1}128 \ DK

4 : AddRelationToIC(K, u, v)
5 : return BK[v]

Function EmbedChallengeMessage(K)

1 : if K ∈ SIC : return ⊥
2 : if ige-key-to-data-map[K] = ⊥ : return ⊥
3 : (pige, cige)← ige-key-to-data-map[K]

4 : x0 ← 0128 ; y0 ← 0128

5 : x1 ∥ . . . ∥ x14 ← pige // Parse into 128-bit blocks.

6 : y1 ∥ . . . ∥ y14 ← cige // Parse into 128-bit blocks.

7 : for i = 1, . . . , 14 :

8 : ui ← xi ⊕ yi−1

9 : vi ← yi ⊕ xi−1

10 : AddRelationToIC(K, ui, vi)

Function AddRelationToIC(K, u, v)
// This function is identical to the

// corresponding function in game G0 of Fig. 29.

Fig. 31. Games G12–G13 for the proof of Theorem 4.

53



Games G14–G18

1 : b←$ {0, 1} ; c∗rsa ← ⊥ ; SIC ← ∅

2 : c∗ige ← ⊥ ; K∗ ← ⊥
3 : (N, p, q, e, d)←$ RSA.KGen() ; pk← (N, e)

4 : b′ ←$ DENC,DEC,H,IC,IC−1

IND-CCA (pk)

5 : return b = b′

Oracle ENC(m0, m1)

1 : require (c∗rsa = ⊥) ∧ (|m0| = |m1|)
2 : require m0, m1 ∈ M
3 : attempt← 1

4 : prsa ←$ {0, 1}2048

5 : z← prsa // Parse prsa as an integer.

6 : r ∥ cige ← prsa // s.t. |r| = 256, |cige| = 1792.

7 : if T[cige] ̸= ⊥ : abort(false)

8 : if ige-ciphertext-to-key-map[cige] ̸= ⊥ :

9 : abort(false)

10 : K←$ {0, 1}256

11 : ige-ciphertext-to-key-map[cige]← (r, K)
12 : if K ∈ SIC : abort(false)

13 : if ige-key-to-data-map[K] ̸= ⊥ :

14 : abort(false)

15 : pad←$ {0, 1}1536−|mb |

16 : mpadded ← mb ∥ pad
17 : if cige = K ∥ mpadded : abort(false)

18 : h← H(K ∥ mpadded)

19 : pige ← reverse(mpadded) ∥ h
20 : ige-key-to-data-map[K]← (pige, cige)
21 : if z ̸∈ ZN :

22 : attempt← attempt+ 1

23 : if attempt > max-attempts :

24 : abort(false)

25 : goto line 4

26 : c∗rsa ← ze mod N
27 : c∗ige ← cige ; K∗ ← K
28 : return c∗rsa

Oracle DEC(crsa)
// This oracle is identical to the

// corresponding oracle in game G0 of Fig. 29.

Function AddRelationToIC(K, u, v)
// This function is identical to the

// corresponding function in game G0 of Fig. 29.

Random oracle H(a) for a ∈ {0, 1}1792

1 : if T[a] = ⊥ :

2 : if ige-ciphertext-to-key-map[a] ̸= ⊥ :

3 : (r, K)← ige-ciphertext-to-key-map[a]
4 : if a = c∗ige : // Might have inverted RSA.

5 : T[a]← r⊕ K
6 : else : // a ̸= c∗ige

7 : if K ̸∈ SIC :

8 : bad6 ← true // Directly guessed cige ̸= cige.

9 : T[a]← r⊕ K // G14

10 : abort(false) // G15–G17

11 : T[a]←$ {0, 1}256 // G18

12 : else : // K ∈ SIC

13 : bad8 ← true // Recovered cige via K.

14 : T[a]← r⊕ K // G14–G16

15 : T[a]←$ {0, 1}256 // G17–G18

16 : else : // ige-ciphertext-to-key-map[a] = ⊥

17 : T[a]←$ {0, 1}256

18 : return T[a]

Ideal cipher IC(K, u) for K ∈ {0, 1}256, u ∈ {0, 1}128

Ideal cipher IC−1(K, v) for K ∈ {0, 1}256, v ∈ {0, 1}128

// These oracles are identical to the

// corresponding oracles in game G13 of Fig. 31.

Function EmbedChallengeMessage(K)

1 : if K ∈ SIC : return ⊥
2 : if ige-key-to-data-map[K] = ⊥ : return ⊥
3 : (pige, cige)← ige-key-to-data-map[K]
4 : if T[cige] = ⊥ :

5 : bad7 ← true // Directly guessed K.

6 : abort(false) // G16–G17

7 : return ⊥ // G18

8 : else : // T[cige] ̸= ⊥

9 : if cige ̸= c∗ige :

10 : bad8 ← true // Recovered K via cige.

11 : return ⊥ // G17–G18

12 : // This line is reached only if (T[cige] ̸= ⊥) ∧ (cige = c∗ige).

13 : x0 ← 0128 ; y0 ← 0128

14 : x1 ∥ . . . ∥ x14 ← pige // Parse into 128-bit blocks.

15 : y1 ∥ . . . ∥ y14 ← cige // Parse into 128-bit blocks.

16 : for i = 1, . . . , 14 :

17 : ui ← xi ⊕ yi−1

18 : vi ← yi ⊕ xi−1

19 : AddRelationToIC(K, ui, vi)

Fig. 32. Games G14–G18 for the proof of Theorem 4.

54



per attempt, where ψ = min(21792, 22048 − N).

AdversaryDIND-CCA makes at most a single query to oracle ENC. Oracle ENC runs for at most max-attempts
iterations, discarding at most max-attempts− 1 values of prsa. Each of the discarded prsa might have con-
tained a distinct 1792-bit suffix.

Oracle H is called at most nH times directly by adversary DIND-CCA, at most 2 · nDEC times from the
queries DIND-CCA makes to DEC, and at most max-attempts times during the single query DIND-CCA
makes to ENC.

It follows that Pr[G14]− Pr[G15] ≤

Pr[badG15
6 ] ≤ (nH + 2 · nDEC +max-attempts) · (max-attempts− 1) · 2

min(21792, 22048 − N)

<
max-attempts · (nH + nDEC +max-attempts)

min(21790, 22046 − N)
.

Analysis of G15 → G16. Consider game G16. The flag bad
G16
7 is set when EmbedChallengeMessage is called

with a key K ̸∈ SIC as input for which the table entry ige-key-to-data-map[K] contains a ciphertext cige
that was not previously queried to the random oracle H. But in oracle ENC every key K is sampled
independently of the corresponding ciphertext cige. The only condition oracle ENC applies to the sampled
keys is “if cige = K ∥ mpadded : abort(false)”. This implies that, even if the adversary obtained some cige
but did not query it into H, then cige could have been matched to any of the 2256 − 1 keys that are not the
prefix of cige, each with the same probability. Note that even if we hypothetically allowed DIND-CCA to
query its oracle DEC on the challenge ciphertext c∗rsa as input, the decryption oracle would still have to
query the random oracle H on c∗ige in order to learn the challenge key K∗. This implies that our analysis of
this transition would remain valid.

AdversaryDIND-CCA makes at most a single query to oracle ENC. Oracle ENC runs for at most max-attempts
iterations, sampling at most max-attempts distinct keys in total, and creating an entry in the table ige-
key-to-data-map for each of them. The function EmbedChallengeMessage is called with a single key as
input per each query to IC, IC−1, and DEC (i.e. a single query to DEC could trigger many calls to
EmbedChallengeMessage, but with the same key as input). We have

Pr[badG16
7 ] ≤ max-attempts · (nDEC + nIC)

2256 − 1
<

max-attempts · (nDEC + nIC)

2255 .

Analysis of G16 → G17. Consider game G17. The flag bad
G17
8 can be set in two different places in this

game, each capturing a distinct case:

– The flag bad
G17
8 is set in oracle H when it is queried on an input cige ̸= c∗rsa such that T[cige] = ⊥, and

ige-ciphertext-to-key-map[cige] = (r, K) for some key K ∈ SIC. This could only occur if the adversary
previously guessed K. We ruled out this case in the transition G15 → G16, making the game G17 abort
before it could have reached this case.

– The flag bad
G17
8 is set in function EmbedChallengeMessage when it is called on an input K such that

K ̸∈ SIC, and (pige, cige) ← ige-key-to-data-map[K] for a ciphertext cige ̸= c∗rsa satisfying T[cige] ̸= ⊥.
This could only occur if the adversary previously guessed cige without querying its ideal cipher on
the key K first. We ruled out this case in the transition G14 → G15, making the game G17 abort before
it could have reached this case.

It follows that
Pr[G16]− Pr[G17] ≤ Pr[badG17

8 ] = 0.

55



Analysis of G17 → G18. Consider game G18. Game G18 is obtained from game G17 by replacing the
abort(false) calls in line 10 in oracle H and line 6 in function EmbedChallengeMessage with some code in
line 11 and line 7 respectively. An abort(false) call causes the adversary to immediately lose the game.
The advantage of an adversary could only increase by replacing it with anything else. We have

Pr[G17] ≤ Pr[G18].

Analysis of G18 → G19. Game of G19 is obtained from game G18 by changing the following code.
Oracle H of G19 simply removes the dead code from the corresponding oracle from G18. The function
EmbedChallengeMessage in G18 immediately returns ⊥ unless it is queried on a key K whose table entry
ige-key-to-data-map[K] contains c∗ige, and unless T[c∗ige] ̸= ⊥. Note that oracle ENC in game G18 contains
the conditional statement “if T[cige] ̸= ⊥ : abort (false)”. This means that only the challenge key K∗

could contain c∗ige in its entry for table ige-key-to-data-map. The function EmbedChallengeMessage in game
G19 modifies the corresponding function from G18 accordingly. It uses the global of K∗ and c∗ige directly,
without having to first check the contents of ige-key-to-data-map[K]. Games G18 and G19 are functionally
equivalent, so

Pr[G18] = Pr[G19].

Analysis of G19 → G20. Consider game G20. Game G20 is obtained from game G19 by replacing the
abort(false) call in line 24 of oracle ENC with some pseudocode in lines 25 to 27, and simply removing
multiple other abort(false) calls from ENC. An abort(false) call causes the adversary to immediately
lose the game. The advantage of an adversary could only increase by replacing such a call with anything
else, or by removing it. We have

Pr[G19] ≤ Pr[G20].

Analysis of G20 → G21. Game G21 simply rewrites game G20, removing the dead code from the ENC
oracle. In particular, note that we are no longer using ige-ciphertext-to-key-map anywhere and can thus
stop writing to it. We have

Pr[G20] = Pr[G21].

Analysis of G21 → G22. Game G22 is obtained from game G21 by moving the following code from oracle
ENC to function EmbedChallengeMessage:

h← H(K ∥ mpadded)

pige ← reverse(mpadded) ∥ h.

In this transition, we rely on the two abort(false) calls that still remain in the ENC oracle. In particular:

– The conditional statement “if T[cige] ̸= ⊥ : abort(false)” guarantees that c∗ige will not be the same
as one of the K ∥ mpadded values from the prior rejection sampling iterations. This means that the
functionality of the game does not change if the random oracle H is no longer called on the discarded
K ∥ mpadded.

– The conditional statement “if cige = K ∥ mpadded : abort(false)” guarantees that the behaviour of
H(c∗ige) does not change even if the game does not immediately call H(K∗ ∥ m∗padded) inside the ENC

oracle (instead delaying this query until function EmbedChallengeMessage is called).

It follows that
Pr[G21] = Pr[G22].

56



Games G19–G20

1 : b←$ {0, 1} ; c∗rsa ← ⊥ ; SIC ← ∅

2 : c∗ige ← ⊥ ; K∗ ← ⊥ ; r∗ ← ⊥ ; p∗ige ← ⊥
3 : (N, p, q, e, d)←$ RSA.KGen() ; pk← (N, e)

4 : b′ ←$ DENC,DEC,H,IC,IC−1

IND-CCA (pk)

5 : return b = b′

Oracle ENC(m0, m1)

1 : require (c∗rsa = ⊥) ∧ (|m0| = |m1|)
2 : require m0, m1 ∈ M
3 : attempt← 1

4 : prsa ←$ {0, 1}2048

5 : z← prsa // Parse prsa as an integer.

6 : r ∥ cige ← prsa // s.t. |r| = 256, |cige| = 1792.

7 : if T[cige] ̸= ⊥ : abort(false)

8 : if ige-ciphertext-to-key-map[cige] ̸= ⊥ : // G19

9 : abort(false) // G19

10 : K←$ {0, 1}256

11 : ige-ciphertext-to-key-map[cige]← (r, K)
12 : if K ∈ SIC : abort(false) // G19

13 : if ige-key-to-data-map[K] ̸= ⊥ : // G19

14 : abort(false) // G19

15 : pad←$ {0, 1}1536−|mb |

16 : mpadded ← mb ∥ pad
17 : if cige = K ∥ mpadded : abort(false)

18 : h← H(K ∥ mpadded)

19 : pige ← reverse(mpadded) ∥ h
20 : ige-key-to-data-map[K]← (pige, cige)
21 : if z ̸∈ ZN :

22 : attempt← attempt+ 1

23 : if attempt > max-attempts :

24 : abort(false) // G19

25 : z←$ {0, . . . , N − 1} // G20

26 : prsa ← z // Parse z as a 2048-bit string. // G20

27 : goto line 6 // G20

28 : goto line 4

29 : c∗rsa ← ze mod N
30 : c∗ige ← cige ; K∗ ← K ; r∗ ← r ; p∗ige ← pige
31 : return c∗rsa

Oracle DEC(crsa)
// This oracle is identical to the

// corresponding oracle in game G0 of Fig. 29.

Random oracle H(a) for a ∈ {0, 1}1792

1 : if T[a] = ⊥ :

2 : if a = c∗ige :

3 : T[a]← r∗ ⊕ K∗

4 : else : // a ̸= c∗ige

5 : T[a]←$ {0, 1}256

6 : return T[a]

Ideal cipher IC(K, u)
Ideal cipher IC−1(K, v)
// These oracles are identical to the

// corresponding oracles in game G13 of Fig. 31.

Function EmbedChallengeMessage(K)

1 : if K ∈ SIC : return ⊥
2 : if K ̸= K∗ : return ⊥
3 : if T[c∗ige] = ⊥ : return ⊥

4 : x0 ← 0128 ; y0 ← 0128

5 : x1 ∥ . . . ∥ x14 ← p∗ige // Parse into 128-bit blocks.

6 : y1 ∥ . . . ∥ y14 ← c∗ige // Parse into 128-bit blocks.

7 : for i = 1, . . . , 14 :

8 : ui ← xi ⊕ yi−1

9 : vi ← yi ⊕ xi−1

10 : AddRelationToIC(K, ui, vi)

Function AddRelationToIC(K, u, v)
// This function is identical to the

// corresponding function in game G0 of Fig. 29.

Fig. 33. Games G19–G20 for the proof of Theorem 4.

57



Games G21–G26

1 : b←$ {0, 1} ; c∗rsa ← ⊥ ; SIC ← ∅

2 : c∗ige ← ⊥ ; K∗ ← ⊥ ; r∗ ← ⊥ ; p∗ige ← ⊥
3 : m∗0 ← ⊥ ; m∗1 ← ⊥ ; m∗padded ← ⊥
4 : (N, p, q, e, d)←$ RSA.KGen() ; pk← (N, e)

5 : b′ ←$ DENC,DEC,H,IC,IC−1

IND-CCA (pk)

6 : return b = b′

Oracle ENC(m0, m1)

1 : require (c∗rsa = ⊥) ∧ (|m0| = |m1|)
2 : require m0, m1 ∈ M
3 : attempt← 1

4 : prsa ←$ {0, 1}2048

5 : z← prsa // Parse prsa as an integer.

6 : r ∥ cige ← prsa // s.t. |r| = 256, |cige| = 1792.

7 : if T[cige] ̸= ⊥ : abort(false) // G21–G24

8 : K←$ {0, 1}256 // G21–G23

9 : pad←$ {0, 1}1536−|mb | // G21–G23

10 : mpadded ← mb ∥ pad // G21–G23

11 : if cige = K ∥ mpadded : // G21–G22

12 : abort(false) // G21–G22

13 : h← H(K ∥ mpadded) // G21

14 : pige ← reverse(mpadded) ∥ h // G21

15 : if z ̸∈ ZN :

16 : attempt← attempt+ 1

17 : if attempt > max-attempts :

18 : z←$ {0, . . . , N − 1}
19 : prsa ← z // Parse z as a 2048-bit string.

20 : goto line 6

21 : goto line 4

22 : c∗rsa ← ze mod N
23 : c∗ige ← cige ; r∗ ← r ; m∗0 ← m0 ; m∗1 ← m1

24 : p∗ige ← pige // G21

25 : K∗ ← K ; m∗padded ← mpadded // G21–G23

26 : return c∗rsa

Oracle DEC(crsa)
// This oracle is identical to the

// corresponding oracle in game G0 of Fig. 29.

Random oracle H(a) for a ∈ {0, 1}1792

1 : if T[a] = ⊥ :

2 : if a = c∗ige :

3 : T[a]← r∗ ⊕ K∗ // G21–G23

4 : K∗ ←$ {0, 1}256 ; T[a]← r∗ ⊕ K∗ // G24–G25

5 : T[a]←$ {0, 1}256 ; K∗ ← T[a]⊕ r∗ // G26

6 : else : // a ̸= c∗ige

7 : T[a]←$ {0, 1}256

8 : return T[a]

Ideal cipher IC(K, u)
Ideal cipher IC−1(K, v)
// These oracles are identical to the

// corresponding oracles in game G13 of Fig. 31.

Function EmbedChallengeMessage(K)

1 : if K ∈ SIC : return ⊥
2 : if K ̸= K∗ : return ⊥
3 : if T[c∗ige] = ⊥ : return ⊥ // G21–G24

4 : pad←$ {0, 1}1536−|m∗b | // G24–G26

5 : m∗padded ← m∗b ∥ pad // G24–G26

6 : h← H(K∗ ∥ m∗padded) // G22–G26

7 : pige ← reverse(m∗padded) ∥ h // G22–G26

8 : x0 ← 0128 ; y0 ← 0128

9 : // Parse into 128-bit blocks.

10 : x1 ∥ . . . ∥ x14 ← p∗ige // G21

11 : x1 ∥ . . . ∥ x14 ← pige // G22–G26

12 : y1 ∥ . . . ∥ y14 ← c∗ige
13 : for i = 1, . . . , 14 :

14 : ui ← xi ⊕ yi−1

15 : vi ← yi ⊕ xi−1

16 : AddRelationToIC(K, ui, vi)

Function AddRelationToIC(K, u, v)
// This function is identical to the

// corresponding function in game G0 of Fig. 29.

Fig. 34. Games G21–G26 for the proof of Theorem 4.

58



Analysis of G22 → G23. Consider game G23. Game G23 is obtained from game G22 by removing a
conditional statement in the ENC oracle that resulted in calling abort (false). An abort (false) call
causes the adversary to immediately lose the game. The advantage of an adversary could only increase
by removing it.

Pr[G22] ≤ Pr[G23].

Analysis of G23 → G24. Game G24 is obtained from game G23 by moving the following code from oracle
ENC to either oracle H (i.e. the first line) or function EmbedChallengeMessage (i.e. the later two lines):

K←$ {0, 1}256

pad←$ {0, 1}1536−|mb |

mpadded ← mb ∥ pad.

The conditional statement “if T[cige] ̸= ⊥ : abort(false)” in the ENC oracle guarantees that the random
oracle H will necessarily be called before the function EmbedChallengeMessage can be used to program
the ideal cipher tables. This allows us to sample K∗ at a later time, without changing the functionality of
the game. We have

Pr[G23] = Pr[G24].

Analysis of G24 → G25. Consider game G25. Game G25 is obtained from game G24 by removing a
conditional statement in the ENC oracle that resulted in calling abort(false), and also by removing the
“if T[c∗ige] = ⊥ : return⊥” conditional statement from function EmbedChallengeMessage. An abort(false)
call causes the adversary to immediately lose the game; the advantage of an adversary could only increase
by removing it. Whereas the condition “T[c∗ige] = ⊥” inside EmbedChallengeMessage can never be true be-
cause we now sample K∗ inside oracle H, and an earlier conditional statement in EmbedChallengeMessage
ensures that K∗ ̸= ⊥.

Pr[G24] ≤ Pr[G25].

Analysis of G25 → G26. Game G26 is obtained from game G25 by replacing oracle H’s line 4 containing

K∗ ←$ {0, 1}256 ; T[a]← r∗ ⊕ K∗

with line 5 containing
T[a]←$ {0, 1}256 ; K∗ ← T[a]⊕ r∗.

Games G25 and G26 are functionally equivalent, so

Pr[G25] = Pr[G26].

Analysis of G26 → G27. Game G27 removes dead code from game G26, and rewrites small snippets
of code inside oracles ENC and H. In particular, note that the rejection sampling in game G26 does not
change the internal state of the game, and always succeeds in sampling a uniformly random element
from ZN . So game G27 samples such an element right away, directly from ZN . And line 5 of oracle H in
game G27 simply rewrites the corresponding code of G26.

Game G27 also rewrites the code of oracle DEC in the following way. First, it defines a helper function
PreSampleH that is used only by oracle DEC. The function PreSampleH is only called on inputs that
were not previously queried to the random oracle, i.e. PreSampleH(a) for some input “a” is only called
if T[a] = ⊥. On such an input, function PreSampleH mimics the functionality of the random oracle,
sampling a new random-oracle output if needed, and saving it into its own table R. Table R therefore
contains the random-oracle outputs that were added by oracle DEC. These values are lazily propagated
from R into T when oracle H is called on an input “a” for which T[a] = ⊥ and R[a] ̸= ⊥.

59



The decryption oracle DEC contains a conditional statement checking the condition T[cige] = ⊥, and
both of its conditional branches compute the values K, pige, mpadded, h. When T[cige] = ⊥ is true, then K is
computed via PreSampleH(cige)⊕ r instead of H(cige)⊕ r. Both instructions are equivalent because the
aforementioned lazy propagation provides consistency between PreSampleH and H. The first instruction
after the conditional statement is

if h ̸= H(K ∥ mpadded) : return ⊥.

Both branches of the conditional statement effectively duplicate this instruction when T[K ∥ mpadded] = ⊥
is true, expressing the duplicate condition in terms of PreSampleH instead of H as follows:

if h ̸= PreSampleH(K ∥ mpadded) : return ⊥.

(The first conditional branch also requires (K ∥ mpadded ̸= cige) in order to run the duplicate instruction;
we discuss it in the next transition.) Games G26 and G27 are functionally equivalent. We have

Pr[G26] = Pr[G27].

Analysis of G27 → G28. The flag bad9 can be set from 3 distinct lines of oracle DEC in game G28: line 12,
line 18 and line 27. In two cases (line 12 and line 27), this happens when DIND-CCA succeeds in querying
its DEC oracle on a ciphertext for which T[K ∥ mpadded] = ⊥ and h = R[K ∥ mpadded]. The former means
that DIND-CCA has not yet explicitly queried its random oracle on K ∥ mpadded. If the remaining case did
not exist (i.e. disregarding line 18, purely hypothetically), then DIND-CCA could have at best attempted
to guess the 256-bit value R[K ∥ mpadded], one guess per decryption query. However, further analysis is
required due to the possibility of setting the flag bad9 in line 18.

The flag bad9 is set in line 18 if the instruction K← PreSampleH(cige)⊕ r in line 6 of oracle DEC is used to
obtain some K ∥ mpadded for which either of the following statements is true: (a) K ∥ mpadded = cige, or
(b) T[K ∥ mpadded] ̸= ⊥. Besides guessing R[K ∥ mpadded] one query at a time (as per above), adversary
DIND-CCA could learn more information about R[K ∥ mpadded] by querying ciphertexts to nDEC for which
(a) or (b) would be true. This exhausts DIND-CCA’s options, i.e. the adversary cannot benefit from the
instruction K← PreSampleH(cige)⊕ r in any other way.

Consider the set A← SRO ∪
{

cige
}

containing all prior inputs to H, along with the value cige. The above
statements (a) or (b) are true iff

(
PreSampleH(cige)⊕ r

)
∈ A. To see this, we expand

h = H(K∥mpadded) = H(H(cige)⊕ r∥mpadded)

and note that the output of H(cige) is fed as an input to H after XOR-ing it with r. The probability
of setting the flag bad9 in line 18 can be informally stated Pr[

(
PreSampleH(cige)⊕ r

)
∈ A]. In order to

obtain a specific upper-bound, consider the set Q = {η[0 : 256]⊕ r}η∈A containing all 256-bit prefixes
of the set A, each XOR-ed with r. Then Pr[

(
PreSampleH(cige)⊕ r

)
∈ A] ≤ Pr[PreSampleH(cige) ∈ Q] can

be used as an upper bound. This means that adversary can at best attempt to guess the 256-bit value
PreSampleH(cige), but now it gets up to |Q| = |A| = nH + 1 guesses per decryption query. Each query
to oracle DEC can reach only one of the three lines where the flag bad9 is set, and line 18 eliminates the
biggest number of possible PreSampleH(·) values per query. We have

Pr[G27]− Pr[G28] ≤ Pr[badG28
9 ] ≤ nDEC · (nH + 1)

2256 .

Analysis of G28 → G29. In game G29 we remove the instruction if a = c∗ige : K∗ ← R[a]⊕ r∗ from the
function PreSampleH. The value of K∗ is only used inside function EmbedChallengeMessage, and only if
adversary DIND-CCA triggers a call to EmbedChallengeMessage on input K∗. The adversary does not get

60



any information about K∗ until it either queries H on c∗ige, or triggers the call EmbedChallengeMessage(K∗).
By removing the aforementioned line, we changed the behaviour of the latter calls (but only until H(c∗ige)
gets queried). In game G28, the adversary was able to use this behaviour only by exhaustively triggering
EmbedChallengeMessage calls on different values of K until it managed to guess K = K∗. In game G29 this
functionality is removed. A call to EmbedChallengeMessage is made when adversary either queries its
ideal cipher oracles, or when it calls its DEC oracle. The value of K∗ in oracle DEC is effectively sampled
uniformly at random from {0, 1}256. We have

Pr[G28]− Pr[G29] ≤
nDEC + nIC

2256 .

Analysis of G29 → G30. In game G29 the temporary random oracle table R is no longer used in oracle
DEC. The previous transition removed the K∗ ← R[a]⊕ r∗ instruction. And all conditional branches of
oracle DEC that call function PreSampleH in game G29 – always return ⊥ regardless of the value returned
by PreSampleH. So we remove function PreSampleH along with its table R in game G29. Game G30 rewrites
the conditional branches of DEC accordingly, i.e. to always return ⊥. Beyond that, game G30 expands the
code of all oracles. The games are functionally equivalent, so

Pr[G29] = Pr[G30].

Analysis of G30 → G31. We build an adversary FOWRSA in Fig. 37 that can invert the one-wayness
of RSA whenever the flag bad10 is set in game G31. Note that the encryption and decryption oracles in
game G31 never call the random oracle H on any inputs that were not previously queried by adversary
DIND-CCA directly. This allows the one-wayness adversary FOWRSA to simulate the decryption oracle for
DIND-CCA, by iterating over all prior DIND-CCA’s calls to its random oracle H in an attempt to reconstruct
every ciphertext that it queries to its decryption oracle DEC. It follows that

Pr[G30]− Pr[G31] ≤ Pr[badG31
10 ] ≤ AdvOW-RSA

RSA.KGen(FOWRSA).

Note that the adversary here does not need to simulate the parts of the game inside oracle H and function
EmbedChallengeMessage that are doing the programming of the idealised oracles.

Analysis of G31. Game G31 no longer performs the programming of the ideal cipher tables in function
EmbedChallengeMessage. In particular, this game no longer uses the challenge bit. The adversary can, at
best, try to guess it, so

Pr[G31] =
1
2

.

This concludes the proof.

61



Games G27–G29

1 : b←$ {0, 1} ; c∗rsa ← ⊥ ; SIC ← ∅ ; SRO ← ∅

2 : c∗ige ← ⊥ ; K∗ ← ⊥ ; r∗ ← ⊥
3 : m∗0 ← ⊥ ; m∗1 ← ⊥
4 : (N, p, q, e, d)←$ RSA.KGen() ; pk← (N, e)

5 : b′ ←$ DENC,DEC,H,IC,IC−1

IND-CCA (pk)

6 : return b = b′

Oracle ENC(m0, m1)

1 : require (c∗rsa = ⊥) ∧ (|m0| = |m1|)
2 : require m0, m1 ∈ M
3 : z←$ {0, . . . , N − 1}
4 : prsa ← z // Parse z as a 2048-bit string.

5 : r∗ ∥ c∗ige ← prsa // s.t. |r∗ | = 256,
∣∣c∗ige∣∣ = 1792.

6 : m∗0 ← m0 ; m∗1 ← m1 ; c∗rsa ← ze mod N
7 : return c∗rsa

Random oracle H(a) for a ∈ {0, 1}1792

1 : SRO ← SRO ∪ {a}
2 : if T[a] = ⊥ :

3 : T[a]←$ {0, 1}256

4 : if R[a] ̸= ⊥ : T[a]← R[a]
5 : if a = c∗ige : K∗ ← T[a]⊕ r∗

6 : return T[a]

Function EmbedChallengeMessage(K)

1 : if K ∈ SIC : return ⊥
2 : if K ̸= K∗ : return ⊥

3 : pad←$ {0, 1}1536−|mb |

4 : mpadded ← mb ∥ pad
5 : h← H(K∗ ∥ mpadded)

6 : pige ← reverse(mpadded) ∥ h

7 : x0 ← 0128 ; y0 ← 0128

8 : x1 ∥ . . . ∥ x14 ← pige // Parse into 128-bit blocks.

9 : y1 ∥ . . . ∥ y14 ← c∗ige // Parse into 128-bit blocks.

10 : for i = 1, . . . , 14 :

11 : ui ← xi ⊕ yi−1

12 : vi ← yi ⊕ xi−1

13 : AddRelationToIC(K, ui, vi)

Function AddRelationToIC(K, u, v)
// This function is identical to the

// corresponding function in game G0 of Fig. 29.

Oracle DEC(crsa)

1 : require (crsa ̸= c∗rsa) ∧ (crsa ∈ ZN)

2 : z← (crsa)d mod N
3 : prsa ← z // Parse z as a 2048-bit string.

4 : r ∥ cige ← prsa // s.t. |r| = 256, |cige| = 1792.

5 : if T[cige] = ⊥ :

6 : K← PreSampleH(cige)⊕ r

7 : pige ← IGEIC,IC−1
.Dec(K, 0256, cige)

8 : mpadded ← reverse(pige[0 : 1536])

9 : h← pige[1536 : 1792]

10 : if (T[K ∥ mpadded] = ⊥) ∧ (K ∥ mpadded ̸= cige) :

11 : if h ̸= PreSampleH(K ∥ mpadded) : return ⊥
12 : bad9 ← true

13 : return ⊥ // G28–G30

14 : else : // (T[K ∥ mpadded] ̸= ⊥) ∨ (K ∥ mpadded = cige)

15 : // Q← ∅ ; A← SRO ∪ {cige}

16 : // for each η ∈ A : Q← Q ∪ {η[0 : 256]⊕ r}

17 : // PreSampleH(cige) ∈ Q

18 : bad9 ← true

19 : return ⊥ // G28–G30

20 : else : // T[cige] ̸= ⊥

21 : K← H(cige)⊕ r

22 : pige ← IGEIC,IC−1
.Dec(K, 0256, cige)

23 : mpadded ← reverse(pige[0 : 1536])

24 : h← pige[1536 : 1792]

25 : if T[K ∥ mpadded] = ⊥ :

26 : if h ̸= PreSampleH(K ∥ mpadded) : return ⊥
27 : bad9 ← true

28 : return ⊥ // G28–G30

29 : if h ̸= H(K ∥ mpadded) : return ⊥
30 : m← RemovePadding(mpadded)

31 : return m

Function PreSampleH(a) for a ∈ {0, 1}1792

1 : if R[a] = ⊥ :

2 : R[a]←$ {0, 1}256

3 : if a = c∗ige : K∗ ← R[a]⊕ r∗ // G27–G28

4 : return R[a]

Ideal cipher IC(K, u)
Ideal cipher IC−1(K, v)
// These oracles are identical to the

// corresponding oracles in game G13 of Fig. 31.

Fig. 35. Games G27–G29 for the proof of Theorem 4.

62



Games G30–G31

1 : b←$ {0, 1} ; c∗rsa ← ⊥ ; SIC ← ∅

2 : c∗ige ← ⊥ ; K∗ ← ⊥ ; r∗ ← ⊥
3 : m∗0 ← ⊥ ; m∗1 ← ⊥
4 : (N, p, q, e, d)←$ RSA.KGen() ; pk← (N, e)

5 : b′ ←$ DENC,DEC,H,IC,IC−1

IND-CCA (pk)

6 : return b = b′

Oracle ENC(m0, m1)

1 : require (c∗rsa = ⊥) ∧ (|m0| = |m1|)
2 : require m0, m1 ∈ M
3 : z←$ {0, . . . , N − 1}
4 : prsa ← z // Parse z as a 2048-bit string.

5 : r∗ ∥ c∗ige ← prsa // s.t. |r∗ | = 256,
∣∣c∗ige∣∣ = 1792.

6 : m∗0 ← m0 ; m∗1 ← m1

7 : c∗rsa ← ze mod N
8 : return c∗rsa

Random oracle H(a) for a ∈ {0, 1}1792

1 : if T[a] = ⊥ :

2 : T[a]←$ {0, 1}256

3 : if a = c∗ige : K∗ ← T[a]⊕ r∗

4 : return T[a]

Function EmbedChallengeMessage(K)

1 : if K ∈ SIC : return ⊥
2 : if K ̸= K∗ : return ⊥
3 : bad10 ← true

4 : return ⊥ // G31

5 : pad←$ {0, 1}1536−|mb |

6 : mpadded ← mb ∥ pad
7 : h← H(K∗ ∥ mpadded)

8 : pige ← reverse(mpadded) ∥ h

9 : x0 ← 0128 ; y0 ← 0128

10 : x1 ∥ . . . ∥ x14 ← pige // Parse into 128-bit blocks.

11 : y1 ∥ . . . ∥ y14 ← c∗ige // Parse into 128-bit blocks.

12 : for i = 1, . . . , 14 :

13 : ui ← xi ⊕ yi−1

14 : vi ← yi ⊕ xi−1

15 : AddRelationToIC(K, ui, vi)

Oracle DEC(crsa)

1 : require (crsa ̸= c∗rsa) ∧ (crsa ∈ ZN)

2 : z← (crsa)d mod N
3 : prsa ← z // Parse z as a 2048-bit string.

4 : r ∥ cige ← prsa // s.t. |r| = 256, |cige| = 1792.

5 : if T[cige] = ⊥ : return ⊥
6 : K← H(cige)⊕ r

7 : pige ← IGEIC,IC−1
.Dec(K, 0256, cige)

8 : mpadded ← reverse(pige[0 : 1536])

9 : h← pige[1536 : 1792]

10 : if T[K ∥ mpadded] = ⊥ : return ⊥
11 : if h ̸= H(K ∥ mpadded) : return ⊥
12 : m← RemovePadding(mpadded)

13 : return m

Ideal cipher IC(K, u)

1 : EmbedChallengeMessage(K)
2 : if AK[u] = ⊥ :

3 : v←$ {0, 1}128 \ RK

4 : AddRelationToIC(K, u, v)
5 : return AK[u]

Ideal cipher IC−1(K, v)

1 : EmbedChallengeMessage(K)
2 : if BK[v] = ⊥ :

3 : u←$ {0, 1}128 \ DK

4 : AddRelationToIC(K, u, v)
5 : return BK[v]

Function AddRelationToIC(K, u, v)

1 : SIC ← SIC ∪ {K}
2 : AK[u]← v ; BK[v]← u
3 : DK ← DK ∪ {u}
4 : RK ← RK ∪ {v}

Fig. 36. Games G30–G31 for the proof of Theorem 4.

63



Adversary FOWRSA(pk, crsa)

1 : b←$ {0, 1} ; c∗rsa ← ⊥ ; SRO ← ∅ ; SIC ← ∅

2 : (N, e)← pk

3 : b′ ←$ DSIMENC,SIMDEC,SIMH,SIMIC,SIMIC−1

IND-CCA (pk)

Oracle SIMENC(m0, m1)

1 : require (c∗rsa = ⊥) ∧ (|m0| = |m1|)
2 : require m0, m1 ∈ M
3 : c∗rsa ← crsa
4 : return c∗rsa

Random oracle SIMH(a) for a ∈ {0, 1}1792

1 : SRO ← SRO ∪ {a}
2 : if T[a] = ⊥ :

3 : T[a]←$ {0, 1}256

4 : return T[a]

Function EmbedChallengeMessage(K)

1 : if K ∈ SIC : return ⊥
2 : // if K ̸= K∗ : return ⊥

3 : for each cige ∈ SRO :

4 : r ← T[cige]⊕ K
5 : prsa ← r ∥ cige
6 : z← prsa // Parse prsa as an integer.

7 : if z ̸∈ ZN : continue

8 : c′rsa ← ze mod N
9 : if c∗rsa = c′rsa : abort(z)

Oracle SIMDEC(crsa)

1 : require (crsa ̸= c∗rsa) ∧ (crsa ∈ ZN)

2 : for each a ∈ SRO :

3 : K ∥ mpadded ← a // s.t. |K| = 256, |mpadded| = 1536.

4 : h← T[K ∥ mpadded]

5 : pige ← reverse(mpadded) ∥ h

6 : cige ← IGESIMIC,SIMIC−1
.Enc(K, 0256, pige)

7 : if T[cige] = ⊥ : continue

8 : r ← T[cige]⊕ K
9 : prsa ← r ∥ cige

10 : z← prsa // Parse prsa as an integer.

11 : if z ̸∈ ZN : continue

12 : c′rsa ← ze mod N
13 : if crsa ̸= c′rsa : continue

14 : m← RemovePadding(mpadded)

15 : return m
16 : return ⊥

Ideal cipher SIMIC(K, u)

1 : EmbedChallengeMessage(K)
2 : if AK[u] = ⊥ :

3 : v←$ {0, 1}128 \ RK

4 : AddRelationToIC(K, u, v)
5 : return AK[u]

Ideal cipher SIMIC−1(K, v)

1 : EmbedChallengeMessage(K)
2 : if BK[v] = ⊥ :

3 : u←$ {0, 1}128 \ DK

4 : AddRelationToIC(K, u, v)
5 : return BK[v]

Function AddRelationToIC(K, u, v)

1 : SIC ← SIC ∪ {K}
2 : AK[u]← v ; BK[v]← u
3 : DK ← DK ∪ {u}
4 : RK ← RK ∪ {v}

Fig. 37. Adversary FOWRSA for the proof of Theorem 4.

64



E TOTPRF: One-time pseudorandomness of truncated SHA-1

The following definition for an intermediate security notion used in the main key exchange proofs
(Appendix H) represents a version of one-time PRF security specific to how truncated SHA-1 is used in
MTP-KE2st and MTP-KE3st.

Definition 12. Consider the game GTOTPRF
H,A in Fig. 38 with the function family H such that H.Ev(hk, x) =

SHA-1(x ∥ hk) where the key length is 512, input length is 1536 and output length is 160, and an adversaryD. The
advantage of D in breaking the TOTPRF-security of H is defined as AdvTOTPRF

H (D) := 2 · Pr
[
GTOTPRF
H,D

]
− 1.

Game GTOTPRF
H,D

1 : b←$ {0, 1}
2 : b′ ← DROR

3 : return b′ = b

ROR(x) // |x| = 1536

1 : hk←$ {0, 1}512

2 : y1 ← H.Ev(hk, x)

3 : y0 ←$ {0, 1}160

4 : ax← yb[0 : 64]

5 : aid← yb[96 : 160]

6 : return (ax, aid)

H.Ev(hk, x) // |hk| = 512, |x| = 1536

1 : // p represents known SHA-1 padding

2 : h0 ← IV160 +̂ SHACAL-1.Ev(x[0 : 512], IV160)

3 : h1 ← h0 +̂ SHACAL-1.Ev(x[512 : 1024], h0)

4 : h2 ← h1 +̂ SHACAL-1.Ev(x[1024 : 1536], h1)

5 : h3 ← h2 +̂ SHACAL-1.Ev(hk, h2)

6 : y← h3 +̂ SHACAL-1.Ev(p, h3)

7 : return y

Fig. 38. Truncated OTPRF of the function family H such that H.Ev(hk, x) = SHA-1(x ∥ hk).

Proposition 1. Let DTOTPRF be an adversary against the TOTPRF-security of the function family H such
that H.Ev(hk, x) = SHA-1(x ∥ hk). Then we can build an adversary DOTPRF against the OTPRF-security of
SHACAL-1 such that AdvTOTPRF

H (DTOTPRF) = AdvOTPRF
SHACAL-1(DOTPRF).

Proof. We can proceed via a direct reduction, i.e. we build DOTPRF to perfectly simulate GTOTPRF
H

for DTOTPRF by replacing the single call to SHACAL-1.Ev(hk, h2) (line 5 of H.Ev in Fig. 38) for hk ←$

{0, 1}512 with a call to DOTPRF’s ROR oracle with input h2. DOTPRF does not need to replace the
remaining SHACAL-1 calls as they do not depend on any secret values and can be computed by
the adversary. DOTPRF then returns the bit guess of DTOTPRF, so we get AdvTOTPRF

H (DTOTPRF) =

AdvOTPRF
SHACAL-1(DOTPRF). ⊓⊔

F INT-PTXT: Integrity of plaintexts of HtE-SE with respect to SKDF

In Appendix F.1, we define an intermediate security notion used in the main proofs (Appendix H) that
speaks to the integrity of plaintexts produced by HtE-SE when it is keyed by SKDF. In Appendices F.2
to F.4, we then define and prove a number of sub-notions that will be used to prove that this property
holds, in addition to any standard or non-standard assumptions. Finally, in Appendix F.5 we state our
integrity result for the HtE-SE-SKDF combination and give its proof.

F.1 Definition of INT-PTXT

Here, we define a weak notion of plaintext integrity. In Fig. 39, the message sampler is used in order to
restrict the power of the adversary, i.e. not allowing it to encrypt arbitrary messages. The encryption
oracle can be called as long as SAMP keeps successfully sampling new messages. The decryption oracle
can be called arbitrarily many times, but only until the first failure to decrypt a ciphertext.

65



Definition 13. Consider the game GINT-PTXT
HtE-SE,SKDF,SAMP,g,p,A in Fig. 39 with the schemes HtE-SE, SKDF defined

in Section 4.2, the message sampler SAMP[·, ·, g, p] defined in Definition 6, and an adversary A. The advan-
tage of A in breaking the INT-PTXT-security of HtE-SE with respect to SKDF,SAMP[·, ·, g, p] is defined as
AdvINT-PTXT

HtE-SE,SKDF,SAMP,g,p(A) := Pr
[
GINT-PTXT
HtE-SE,SKDF,SAMP,g,p,A

]
.

Game GINT-PTXT
HtE-SE,SKDF,SAMP,g,p,A

1 : st← ε ; M← ∅

2 : n←$ {0, 1}128

3 : (ns, stA)←$ A1(n)
4 : if |ns| ̸= 128 :

5 : return false

6 : nn ←$ {0, 1}256

7 : kse ← SKDF.Ev(nn, ns)

8 : AENC,DEC
2 (stA)

9 : return false

ENC(aux) // aux ∈ {0, 1}∗

1 : (st, m, x)←$ SAMP[n, ns, g, p](st, aux)
2 : if m = ⊥ : return ⊥
3 : M←M∪{m}
4 : c←$ HtE-SE.Enc(kse, m)

5 : return (m, x, c)

DEC(c)

1 : m← HtE-SE.Dec(kse, c)
2 : if m = ⊥ : abort(false)

3 : if m ̸∈ M : abort(true)

4 : return m

Fig. 39. Weak plaintext integrity of HtE-SE for keys derived by SKDF and messages sampled by SAMP[·, ·, g, p].

Simplified variant of the INT-PTXT definition. We define a slightly simpler variant of the INT-PTXT
definition below. We will argue that it is equivalent to the original definition, and our security proof in
Appendix F.5 will be stated with respect to it.

Definition 14. Consider the game GINT-PTXT∗
HtE-SE,SKDF,ns,Samp,A in Fig. 40 with the schemes HtE-SE, SKDF defined in

Section 4.2, the message sampler Samp defined in Definition 6, and an adversaryA. The advantage ofA in breaking
the INT-PTXT∗-security of HtE-SE with respect to SKDF,Samp is defined as AdvINT-PTXT∗

HtE-SE,SKDF,ns,Samp(A) :=

Pr
[
GINT-PTXT∗
HtE-SE,SKDF,ns,Samp,A

]
.

Game GINT-PTXT∗
HtE-SE,SKDF,ns,Samp,A

1 : st← ε ; M← ∅

2 : nn ←$ {0, 1}256

3 : kse ← SKDF.Ev(nn, ns)

4 : AENC,DEC

5 : return false

ENC(aux) // aux ∈ {0, 1}∗

1 : (st, m, x)←$ Samp(st, aux)
2 : if m = ⊥ : return ⊥
3 : M←M∪{m}
4 : c←$ HtE-SE.Enc(kse, m)

5 : return (m, x, c)

DEC(c)

1 : m← HtE-SE.Dec(kse, c)
2 : if m = ⊥ : abort(false)

3 : if m ̸∈ M : abort(true)

4 : return m

Fig. 40. Weak plaintext integrity of HtE-SE for keys derived by SKDF on input ns and messages sampled by Samp.

Given an adversaryA = (A1,A2) against the INT-PTXT security of HtE-SE, we can express its advantage
as an expected value of the advantage of A2 against the INT-PTXT∗ security of HtE-SE as follows:

AdvINT-PTXT
HtE-SE,SKDF,SAMP,g,p(A) = En←${0,1}128; (ns,stA)←$A1(n)[Adv

INT-PTXT∗
HtE-SE,SKDF,ns,SAMP[n,ns,g,p](A2(stA))].

Here the expected value is expressed over the randomness in n ←$ {0, 1}128; (ns, stA) ←$ A1(n), and
A2(stA) can be thought of as adversary A2 with some hardcoded input stA. This relation allows us to

66



prove the INT-PTXT∗ security of HtE-SE, and use the obtained upper bound for its advantage as the
upper bound for the INT-PTXT security of HtE-SE. Note that this is meaningful only because our proof
for INT-PTXT∗ is generic with respect to the actual value of ns, i.e. there is no advantage to be gained
from choosing a “bad” value of ns by A1.

F.2 SKDF is an OTPRF

Here, we show that the function SKDF is a one-time PRF.

Proposition 2. Let DOTPRF be an adversary against the OTPRF-security of SKDF. Then we can build an
adversary D3TPRF against the 3TPRF-security of SHACAL-1 (Definition 5) such that AdvOTPRF

SKDF (DOTPRF) =

Adv3TPRFSHACAL-1(D3TPRF).

Proof. We proceed by way of a straightforward reduction. Given an adversary DOTPRF, we directly build
an adversary D3TPRF that simulates the game GOTPRF

SKDF,DOTPRF
(shown in expanded form in Fig. 41) for

DOTPRF, providing an oracle RORSIM and outputting the bit guess of DOTPRF. The RORSIM oracle first
makes a ROR call in its own 3TPRF game to obtain the values k′, (r0, r1, r2). Then, it computes the output
y← h0 ∥ h1 ∥ h′ ∥ k′ where:

hi ← IV160 +̂ ri for i ∈ {0, 1, 2}
h′ ← h2 +̂ SHACAL-1.Ev(pad′, h2).

Note that RORSIM outputs the “real” k′ regardless of the bit in the 3TPRF game, however if b = 0 the
value is random and unrelated to the remaining outputs, just like in the OTPRF game. Hence, D3TPRF
wins whenever DOTPRF wins.

Game GOTPRF
SKDF,D

1 : b←$ {0, 1}
2 : b′ ←$ DROR()

3 : return b′ = b

ROR(x) // |x| = 128

1 : k←$ {0, 1}256

2 : h0 ← IV160 +̂ SHACAL-1.Ev(k ∥ x ∥ pad, IV160)

3 : h1 ← IV160 +̂ SHACAL-1.Ev(x ∥ k ∥ pad, IV160)

4 : h2 ← IV160 +̂ SHACAL-1.Ev(k ∥ k, IV160)

5 : h′ ← h2 +̂ SHACAL-1.Ev(pad′, h2)

6 : y1 ← h0 ∥ h1 ∥ h′ ∥ k[0 : 32]

7 : y0 ←$ {0, 1}512

8 : return yb

Fig. 41. Game GOTPRF
SKDF,D with an expanded definition of SKDF, with different but known SHA-1 padding pad, pad′.

F.3 UPREF: Prefix unpredictability of SKDF

Here, we define an intermediate notion that requires SKDF to have unpredictable prefixes. In Fig. 42 we
require that for a 512-bit key kse = k ∥ iv derived by SKDF (which can be thought of as containing two
256-bit halves k, iv), it is hard to predict k even if iv is known. The adversary is assumed to know ns, while
nn is secret.

Definition 15. Consider the game GUPREF
SKDF,ns,A in Fig. 42 with the function SKDF defined in Section 4.2, a

parameter ns of size 128 bits, and an adversary A. The advantage of A in breaking the UPREF-security of SKDF is
defined as AdvUPREFSKDF,ns

(A) := Pr
[
GUPREF
SKDF,ns,A

]
.

67



Game GUPREF
SKDF,ns,A

1 : win← false

2 : nn ←$ {0, 1}256

3 : kse ← SKDF.Ev(nn, ns)

4 : AGUESS(kse[256 : 512])

5 : return win

GUESS(pref ) // |pref | = 256

1 : if pref = kse[0 : 256] :

2 : win← true

Fig. 42. Prefix unpredictability of keys derived by SKDF on input ns.

We now prove that this notion is satisfied if SKDF is a one-time PRF.

Proposition 3. Let A be an adversary against the UPREF-security of SKDF with respect to ns, making nGuess
queries to its GUESS oracle. Then we can build an adversary D against the OTPRF-security of SKDF such that
AdvUPREFSKDF,ns

(A) = AdvOTPRF
SKDF (D) + nGuess · 2−256.

Proof. We build D as follows: it sets win← false, and obtains kse ←$ ROR(ns) using its own oracle from
the OTPRF game. Then it simulates the UPREF game for A, where GUESSSIM behaves exactly as GUESS
in the original game. Finally, it outputs b′ ← win = true as its guess of the challenge bit b. Observe that if
b = 1, kse = SKDF(nn, ns) for random nn, i.e. D perfectly simulates the UPREF game for A. Otherwise,
the key kse is a random value, and so A can only set win to true by guessing. We can write

AdvOTPRF
SKDF (D) = Pr

[
b′ = 1

∣∣ b = 1
]
− Pr

[
b′ = 1

∣∣ b = 0
]

= Pr
[
GUPREF
SKDF,ns,A

]
− Pr

[
win = true

∣∣∣ kse[0 : 256]←$ {0, 1}256
]

= AdvUPREFSKDF,ns
(A)− nGuess

2256 .

⊓⊔

F.4 USUFF: Suffix unpredictability of SKDF

Here, we define an intermediate notion that expresses that an adversary cannot predict the suffix of the
keys computed via SKDF, even in the presence of evaluation oracles using some ideal permutations.
In Fig. 43, the adversary A has unrestricted access to X, X−1, EVAL and EVAL−1, Here X is an ideal
permutation and EVAL evaluates the function ζ = ⊕k1 ◦ X ◦ ⊕k0 on an input p. The adversary A wins if it
can find k1 ∈ {0, 1}128, hence the name “suffix”, such that c was never involved in an EVAL or EVAL−1

query but k1 ⊕ c was queried to X−1 or output by X.

The motivation for this notion comes from the presence of IGE mode in the proof of Proposition 5. There,
we sample IVs for IGE and provide the adversary with oracle access to IGE encryption and decryption
oracles that take as input only one-block-long plaintexts or ciphertexts respectively. This is captured by
oracles EVAL and EVAL−1. We also provide the adversary with oracle access to the underlying block
cipher with a hardcoded key, explaining why we here only deal with an ideal permutation rather than an
ideal cipher. This is captured by oracles X and X−1. The adversary wins if it can find some value c⋆ in the
range of IGE encrypt algorithm, such that c⋆ was never returned by a prior call to IGE encryption.41 In
particular, what we call k0, k1 here are actually IV values in IGE mode, but we adopted those names here
to match more closely with the Even-Mansour scheme which appears in our analysis.

41 We also have that c⋆ was never queried into IGE decryption. We do not need this in our proof of Proposition 5 but
allows us to appeal to known results in the literature below.

68



Definition 16. Consider the game GUSUFF
SKDF,ns,A in Fig. 43 with the function SKDF defined in Section 4.2, a

parameter ns of size 128 bits, and an adversary A. The advantage of A in breaking the USUFF-security of SKDF is
defined as AdvUSUFFSKDF,ns

(A) := Pr
[
GUSUFF
SKDF,ns,A

]
.

GUSUFF
SKDF,ns,A

1 : C ← ∅
2 : nn ←$ {0, 1}256

3 : kse ← SKDF.Ev(nn, ns)

4 : k0 ← kse[256 : 384]

5 : k1 ← kse[384 : 512]

6 : c⋆ ←$ AEVAL,EVAL−1,X,X−1

7 : win0 ← (c⋆ /∈ C)
8 : win1 ← (B[c⋆ ⊕ k1] ̸= ⊥)
9 : return win0 ∧win1

EVAL(p) // |p| = 128

1 : c← X(p⊕ k0)⊕ k1

2 : C ← C ∪ {c}
3 : return c

EVAL−1(c) // |c| = 128

1 : p← X−1(c⊕ k1)⊕ k0

2 : C ← C ∪ {c}
3 : return p

X(u) // |u| = 128

1 : if A[u] = ⊥ :

2 : A[u]←$ {0, 1}128 \ A
3 : B[A[u]]← u
4 : return A[u]

X−1(v) // |v| = 128

1 : if B[v] = ⊥ :

2 : B[v]←$ {0, 1}128 \ B
3 : A[B[v]]← v
4 : return B[v]

Fig. 43. Suffix unpredictability of keys derived by SKDF on input ns.

Below, we establish that USUFF is hard, if SKDF is a one-time PRF. We first replace the outputs of SKDF
with uniformly random values and then appeal to the security of the Even-Mansour construction [EM97]
in the ideal cipher model. We give the Even-Mansour security game in Fig. 44. It has been established
in [EM97] that no adversary succeeds with probability great than O(nX · nEVAL/2128). We may simplify
this to ε = O(t2/2128).

GEM
B

1 : S , nEVAL, nX ← ∅, 0, 0

2 : k0 ←$ {0, 1}128

3 : k1 ←$ {0, 1}128

4 : p⋆, c⋆ ←$ BEVAL,EVAL−1,X,X−1

5 : win0 ← ((p⋆, c⋆) /∈ S)
6 : win1 ← (EVAL(p⋆) = c⋆)
7 : return win0 ∧win1

EVAL(p) // |p| = 128

1 : c← X(p⊕ k0)⊕ k1

2 : S ← S ∪ {(p, c)}
3 : nEVAL ← nEVAL + 1

4 : return c

EVAL−1(c) // |c| = 128

1 : p← X−1(c⊕ k1)⊕ k0

2 : S ← S ∪ {(p, c)}
3 : nEVAL ← nEVAL + 1

4 : return p

X(u) // |u| = 128

1 : if A[u] = ⊥ :

2 : A[u]←$ {0, 1}128 \ A
3 : B[A[u]]← u
4 : nX ← nX + 1; return A[u]

X−1(v) // |v| = 128

1 : if B[v] = ⊥ :

2 : B[v]←$ {0, 1}128 \ B
3 : A[B[v]]← v
4 : nX ← nX + 1; return B[v]

Fig. 44. Even-Mansour security game.

Proposition 4. Let A be an adversary against GUSUFF
SKDF,ns,A that makes nEVAL queries to EVAL or EVAL−1 and nX

queries to X or X−1 and runs in time t. Then we can build an adversary D against the OTPRF-security of SKDF
(Appendix F.2) such that

AdvUSUFFSKDF,ns
(A) ≤ AdvOTPRF

SKDF (D) + O
(
(3 nX + 1) ·max(nEVAL, 3)

2128

)
+ negl(λ).

69



Proof. We proceed in a series of game hops. G0 is the GUSUFF
SKDF,ns,A game. In G1 we replace the output

of SKDF with random values. This change is detectable by an adversary with advantage at most
AdvOTPRF

SKDF (D) for any PPT adversary D.

In G2, we are now playing a variant of the game in Fig. 44. We construct an adversary B against GEM
B .

Note that in this game, the exact same four oracles are used. This means that B can simulate GUSUFF
SKDF,ns,A

using the oracles provided in the Even-Mansour game, forwarding queries and keeping track of query
response pairs. Let QEVAL be the set of query-response pairs submitted to EVAL or EVAL−1, and QX be
the set of query-response pairs submitted to X or X−1. We normalise the pairs to always store (p, c) for
c = EVAL(p) and (u, v) for u = X−1(v).

Eventually, after t steps the adversaryA outputs some c⋆. AssumeA succeeded. IfQEVAL does not contain
at least three pairs, then B picks random pi and queries EVAL(x) and records the output as ci. Otherwise it
picks random pairs from QEVAL and calls them (p0, c0), (p1, c1), and (p2, c2). From the winning condition
win1 we know that there exists at least one value j such that vj = c⋆ ⊕ k1. The adversary B will use this
fact to recover k0 and k1 that will enable it to win the Even-Mansour game.

Our new adversary B now loops through all pairs (ui, vi) ∈ QX. For each vi, B calculates a key guess
k(i)1 := vi ⊕ c⋆ and uses (p0, c0) to calculate the corresponding value for k(i)0 := X−1(c0 ⊕ k(i)1 )⊕ p0. It then

checks if this key guess is the correct one by calculating X(p1 ⊕ k(i)0 )⊕ k(i)1 and comparing it to c1. If it

matches, B uses k(i)0 , k(i)1 and X() to return (p⋆, c⋆) such that EVAL(p⋆) = c⋆. Note that there is a negligible
probability that more than one value of vi passes the test. In that case, we can use a third (p2, c2) to check
which of the possible resulting keys is the correct one.

Finally, we note that by [EM97] the success probability of B is bounded by O(n′X · n′EVAL/2128) where
n′X ≤ 3 nX + 1 and n′EVAL ≤ max(nEVAL, 3). ⊓⊔

F.5 Proof for INT-PTXT of HtE-SE and SKDF

Proposition 5. Let ns ∈ {0, 1}128. Let Samp = SAMP[n, ns, g, p] be the message sampler given in Definition 6,
instantiated with any n, g, p. Let SKDF, HtE-SE be as defined in Section 4.2. We model AES-256 in HtE-SE as an
ideal cipher. Let AINT-PTXT∗ be any adversary against the INT-PTXT∗-security of HtE-SE with respect to SKDF,
ns, and Samp. Let ttotal ≥ 1 be the number of 128-bit blocks of AES-256 data that are encrypted or decrypted in
total across all the ENC and DEC oracle queries made by AINT-PTXT∗ . Then we can build adversaries ASPR against
the SPR-security of SHA-1 with respect to Samp (Definition 7), AUPREF against the UPREF-security of SKDF
(Definition 15), and AUSUFF against the USUFF-security of SKDF (Definition 16) such that

AdvINT-PTXT∗
HtE-SE,SKDF,ns,Samp(AINT-PTXT∗) ≤

t2
total

2128 + AdvSPRSHA-1,Samp(ASPR)

+ AdvUPREFSKDF,ns
(AUPREF) + AdvUSUFFSKDF,ns

(AUSUFF).

Assume AINT-PTXT∗ makes nENC queries to its oracle ENC, and nIC queries in total to its oracles IC, IC−1. Then
ASPR makes nENC queries to its oracle NEWMSG;AUPREF makes nIC queries to its oracle GUESS;AUSUFF makes
nENC queries to its oracle EVAL, and ttotal queries in total to its oracles X and X−1.

Intuitively, this proof contains two high-level steps. First, we argue that an adversary is unlikely to
produce a plaintext forgery that reuses the first block of a ciphertext obtained from a prior encryption
query. Then we argue that placing any other value in the first block of the attempted ciphertext forgery –
will produce a plaintext that looks uniformly random, and hence fails the integrity check. The latter claim
relies on the use of secret IV values for the IGE encryption and decryption operations (in HtE-SE).

Proof. This proof uses games G0–G11 in Figs. 45, 47 and 49. In all figures: the code highlighted in green
was added for transitions between games, and does not affect the functionality of the initial game in the

70



corresponding figure. The code highlighted in gray generally rewrites the code of the previous game from
the previous figure in an equivalent way.

In the proof, we let P(ℓ) denote the set of all bit-string permutations π : {0, 1}ℓ → {0, 1}ℓ (the inverse of
π is then π−1).

G0. Game G0 is functionally equivalent to game GINT-PTXT∗
HtE-SE,SKDF,ns,Samp,AINT-PTXT∗

. The former expands the
code of algorithms HtE-SE.Enc, HtE-SE.Dec, and further expands the code of algorithms AES-256-IGE.Enc,
AES-256-IGE.Dec (in the ideal cipher model). Highlighted in gray is the expanded code of AES-256-IGE,
and also the code parsing kse into parts (because it was immediately moved from oracles ENC, DEC into
the main body of the game). We have

Pr[G0] = Pr[GINT-PTXT∗
HtE-SE,SKDF,ns,Samp,AINT-PTXT∗

] = AdvINT-PTXT∗
HtE-SE,SKDF,ns,Samp(AINT-PTXT∗).

Games G0–G2

1 : st← ε ; M← ∅ ; nn ←$ {0, 1}256

2 : kse ← SKDF.Ev(nn, ns) ; k← kse[0 : 256]

3 : c0 ← kse[256 : 384] ; p0 ← kse[384 : 512]

4 : AENC,DEC,IC,IC−1

INT-PTXT∗ ; return false

ENC(aux) // aux ∈ {0, 1}∗

1 : (st, m, x)←$ Samp(st, aux)
2 : if m = ⊥ : return ⊥
3 : M←M∪{m}
4 : ℓ← (128− (160 + |m|)) mod 128

5 : r←$ {0, 1}ℓ // pad to block length

6 : p← SHA-1(m) ∥ m ∥ r
7 : // Parse p into 128-bit blocks p1 ∥ . . . ∥ pt .

8 : for i = 1, . . . , t :

9 : ci ← IC(k, pi ⊕ ci−1)⊕ pi−1

10 : c← c1 ∥ . . . ∥ ct

11 : preImg[c1]← m ; return (m, x, c)

IC(i, u) // |i| = 256, |u| = 128

1 : if P[i] = ⊥ : P[i]←$ P(128)

2 : π ← P[i] ; return π(u)

IC−1(i, v) // |i| = 256, |v| = 128

1 : if P[i] = ⊥ : P[i]←$ P(128)

2 : π ← P[i] ; return π−1(v)

DEC(c)

1 : // Parse c into 128-bit blocks c1 ∥ . . . ∥ ct .

2 : p1 ← IC−1(k, c1 ⊕ p0)⊕ c0

3 : for i = 2, . . . , t :

4 : pi ← IC−1(k, ci ⊕ pi−1)⊕ ci−1

5 : p← p1 ∥ . . . ∥ pt

6 : for i = 0, . . . , 15 : // bytes of padding

7 : m← p[160 : |p| − i · 8]
8 : if SHA-1(m) = p[0 : 160] :

9 : if preImg[c1] ̸= ⊥ :

10 : mENC ← preImg[c1]

11 : if m = mENC :

12 : return mENC // G1–G2

13 : elseif m ̸= mENC :

14 : bad0 ← true

15 : ω ← SHA-1(mENC) ∥ mENC // G2

16 : for i′ = 0, . . . , 15 : // G2

17 : if ω = p[0 : |p| − i′ · 8] : // G2

18 : return mENC // G2

19 : abort(false) // G2

20 : if m ̸∈ M : abort(true)

21 : return m
22 : abort(false)

Fig. 45. Games G0–G2 for the proof of Proposition 5.

G0 → G1. Game G1 rewrites game G0 in a functionally equivalent way, moving a single return statement
up (in oracle DEC) and hence skipping a conditional statement that leads to abort(false) (this condition

71



would have failed because m = mENC is an honestly forwarded message, i.e. m ∈ M). We have

Pr[G0]− Pr[G1] = 0.

The only purpose of G1 is to later allow us to rewrite game G2 in an equivalent way into G3.

G1 → G2. In Fig. 46 we build adversary ASPR that breaks SPR security of SHA-1 whenever bad0 is set in
game G1, so

Pr[G1]− Pr[G2] ≤ Pr[badG1
0 ] ≤ Pr[GSPR

SHA-1,Samp,ASPR
] = AdvSPRSHA-1,Samp(ASPR).

In game G2, the code below bad0 ← true returns mENC if and only if this message was previously
encrypted in a prior call to ENC. Otherwise, it calls abort(false), which halts the game with return false

(meaning A lost the game). At the high level, this change eliminates any ambiguity in what could happen
if DEC is queried on a ciphertext that contains the first block from a prior ENC query. Now either the
decryption fails, or the corresponding message from ENC must be returned; no other message (and in
particular a forgery) can be produced this way.

Adversary ANEWMSG
SPR

1 : st← ε ; M← ∅ ; nn ←$ {0, 1}256

2 : kse ← SKDF.Ev(nn, ns) ; k← kse[0 : 256]

3 : c0 ← kse[256 : 384] ; p0 ← kse[384 : 512]

4 : AENC,DEC,IC,IC−1

INT-PTXT∗

ENC(aux) // aux ∈ {0, 1}∗

1 : (m, x)← NEWMSG(aux)
2 : if m = ⊥ : return ⊥
3 : M←M∪{m}
4 : ℓ← (128− (160 + |m|)) mod 128

5 : r←$ {0, 1}ℓ // pad to block length

6 : p← SHA-1(m) ∥ m ∥ r
7 : // Parse p into 128-bit blocks p1 ∥ . . . ∥ pt .

8 : for i = 1, . . . , t :

9 : ci ← IC(k, pi ⊕ ci−1)⊕ pi−1

10 : c← c1 ∥ . . . ∥ ct

11 : preImg[c1]← m ; return (m, x, c)

IC(i, u) // |i| = 256, |u| = 128

IC−1(i, v) // |i| = 256, |v| = 128

// These oracles are identical to the

// corresponding oracles in game G1 of Fig. 45.

DEC(c)

1 : // Parse c into 128-bit blocks c1 ∥ . . . ∥ ct .

2 : p1 ← IC−1(k, c1 ⊕ p0)⊕ c0

3 : for i = 2, . . . , t :

4 : pi ← IC−1(k, ci ⊕ pi−1)⊕ ci−1

5 : p← p1 ∥ . . . ∥ pt

6 : for i = 0, . . . , 15 : // bytes of padding

7 : m← p[160 : |p| − i · 8]
8 : if SHA-1(m) = p[0 : 160] :

9 : if preImg[c1] ̸= ⊥ :

10 : mENC ← preImg[c1]

11 : if m = mENC :

12 : return mENC

13 : elseif m ̸= mENC :

14 : out← (mENC, m)

15 : abort(out)
16 : if m ̸∈ M : abort(⊥)
17 : return m
18 : abort(⊥)

Fig. 46. Adversary ASPR for the proof of Proposition 5. It simulates G1 for AINT-PTXT∗ .

G2 → G3. Game G3 is functionally equivalent to game G2, so

Pr[G2]− Pr[G3] = 0.

72



In particular, the code of oracle DEC is essentially duplicated twice depending on whether preImg[c1] = ⊥.
If preImg[c1] = ⊥, then oracle DEC in G3 runs the same code as in G2. But if preImg[c1] ̸= ⊥, then A
reused c1 from a prior ENC query and that allows to introduce the following changes (without changing
the functionality): (i) we can use (p1, mENC) ← preImg[c1] instead of explicitly using c0, p0 to derive p1;
these values are meant to be secret, so minimizing their usage now will help us in future steps; (ii)
the abort (true) instruction cannot be reached during this call to DEC (so no further changes to this
conditional branch will be needed in subsequent security games); (iii) the only message potentially
returned by the current DEC call is some mENC that was encrypted in a prior ENC call (note that HtE-SE
does not prevent an attacker from possibly mauling the ciphertext without changing the underlying
plaintext; this possibility is covered here, but is not essential in our proof).

Besides the above changes, we also introduce new X and X−1 oracles that lazily sample and evaluate a
random permutation. We set IC(kse[0 : 256], x) := X(x) and IC−1(kse[0 : 256], y) := X−1(y), and we call
X, X−1 directly from oracles ENC, DEC instead of calling IC(kse[0 : 256], ·), IC−1(kse[0 : 256], ·).

G3 → G4. In G4 we break the consistency between the ideal cipher oracles and X, X−1. Meaning
IC(kse[0 : 256], x) := X(x) and IC−1(kse[0 : 256], y) := X−1(y) is no longer true, and A can learn nothing
useful even by querying the ideal cipher oracles on kse[0 : 256]. This transition requires that A cannot
learn the value kse[0 : 256], even if it happens to know the other half of kse (there is no intuition for why it
could know this; we just cannot get around giving this info to A for free in this transition). Formally, we
build an UPREF adversary in Fig. 48 that wins whenever bad1 is set in game G4, so

Pr[G3]− Pr[G4] ≤ Pr[badG4
1 ] ≤ Pr[GUPREF

SKDF,ns,AUPREF
] = AdvUPREFSKDF,ns

(AUPREF).

G4 → G5. In G5 we do the PRP-to-PRF switch inside X, X−1 (simultaneously). Each call to either of
X, X−1 fills up one new entry in each of A and B. There is a total of ttotal such calls. In the first call, no
collision can happen. In the second call, a collision could happen with probability at most 1

2128 . In the

ttotal-th call a collision could happen with probability at most ttotal−1
2128 . We have

Pr[G4]− Pr[G5] ≤ Pr[badG5
2 ] ≤ 1 + 2 + . . . + (ttotal − 1)

2128 =
(ttotal − 1) · ttotal

2 · 2128 .

This is a standard birthday bound, i.e. bb(0, ttotal, 0, 2128) as per the notation from Appendix D.1.

G5 → G6. In G6 we remove the dead code from oracles IC, IC−1. And we rewrite/expand the code in
the first branch of oracle DEC in a functionally equivalent way. We have

Pr[G5]− Pr[G6] = 0.

The code of AES-256-IGE is now evaluated separately in two conditional branches, depending on whether
B[c1 ⊕ p0] = ⊥. If B[c1 ⊕ p0] = ⊥ then the first ciphertext block of c has never never been queried to X−1

and not previously returned by X. So it should decrypt into a uniformly random plaintext block, and
subsequently cause the entire decrypted ciphertext be indistinguishable from a uniformly random string.
We show this in the next steps.

G6 → G7. In G7 we rewrite pi ← X−1(vi)⊕ ci−1 into the equivalent pi ←$ {0, 1}128, while maintaining
proper bookkeeping of A and B. (No bookkeeping of sets D,R is necessary here, because these sets are
only updated, and never used beyond that.) This transformation is possible because the inverse X−1(vi)
was not yet specified (i.e. B[vi] = ⊥). We have

Pr[G6]− Pr[G7] = 0.

73



G7 → G8. We now show that B[vi] ̸= ⊥ is unlikely to happen, meaning we can change the code in this
conditional branch. We do this by bounding the probability of bad3 being set in game G8 (rather than in
G7), where every plaintext block pi is sampled independently, uniformly at random. The best chance of
triggering the bad3 flag would be if AINT-PTXT∗ queried its oracle DEC once, on a ciphertext containing
ttotal 128-bit blocks. This would guarantee that the conditions preImg[c1] = ⊥ and B[c1 ⊕ p0] = ⊥ would
hold. This means that the DEC oracle would successively sample ttotal random values pi in an attempt to
obtain a collision. We use the birthday bound (using the notation from Appendix D.1)

Pr[G7]− Pr[G8] ≤ Pr[badG8
3 ] ≤ bb(0, ttotal, 0, 2128) ≤ (ttotal − 1) · ttotal

2 · 2128 .

G8 → G9. In G8 when DEC was called for B[c1 ⊕ p0] = ⊥ we sampled the entire plaintext uniformly
at random. The probability of the first 160 bits of such a plaintext containing the SHA-1 hash (or, more
generally, any deterministic function) of a fixed message that is contained in subsequent blocks of this
plaintext is 1

2160 . There are 16 different ways to parse out a message from the plaintext, depending on the
number of padding blocks appended to it. Let nDEC be the maximum number of DEC queries that might
be made by AINT-PTXT∗ during which the conditions preImg[c1] = ⊥ and B[c1 ⊕ p0] = ⊥ are true. Then
we can upper bound the probability of setting the bad4 flag in game G9 as follows:

Pr[G8]− Pr[G9] ≤ Pr[badG9
4 ] ≤ nDEC · 16 · 1

2160 ≤ ttotal · 16 · 1
2160 ,

where the latter inequality holds because nDEC ≤ ttotal is trivially true.

G9 → G10. Game G10 reverts the prior PRP-to-PRF switch, by replacing the abort(false) calls in oracles
X and X−1 with the original pseudocode lines that were used before game G5. An abort (false) call
causes the adversary to immediately lose the game. The advantage of an adversary could only increase
by replacing such a call with anything else. We have

Pr[G9]− Pr[G10] ≤ 0.

G10 → G11. Finally, we build USUFF adversary in Fig. 50 that bounds the probability of bad5 being set
in game G11. We define G11 to call abort (false) whenever preImg[c1] = ⊥ and B[c1 ⊕ p0] ̸= ⊥. These
two conditions together mean that the adversary queried a ciphertext whose first block c1 is not equal
to the first block of some prior challenge-encryption ciphertext, yet the ideal cipher mapping already
maps the output value c1 ⊕ p0 to its corresponding input value. (In particular, in this case we cannot use
the above argument that c1 should decrypt into a uniformly random plaintext block.) Intuitively, this is
very unlikely to occur because it should be hard for the adversary to learn the value of p0. The USUFF
notion captures this intuition. In game G11, the conditional branch for B[c1 ⊕ p0] = ⊥ always returns
abort(false), whereas the higher-level conditional branch for preImg[c1] ̸= ⊥ simply does not use any
secret values (c0, p0 in particular). This allows our USUFF adversary to trivially simulate oracle DEC of
game G11. We have

Pr[G10]− Pr[G11] ≤ Pr[badG11
5 ] ≤ Pr[GUSUFF

SKDF,ns,AUSUFF
] = AdvUSUFFSKDF,ns

(AUSUFF).

G11. In game G11 the instruction abort(true) can no longer be reached, so A can never win. We have

Pr[G11] = 0.

To conclude the proof, we express

AdvINT-PTXT∗
HtE-SE,SKDF,ns,Samp(AINT-PTXT∗) =

10

∑
i=0

(Pr[Gi]− Pr[Gi+1]) + Pr[G11],

and observe that Pr[badG9
4 ] ≤ ttotal

2128 .

74



Games G3–G5

1 : st← ε ; M← ∅ ; nn ←$ {0, 1}256

2 : kse ← SKDF.Ev(nn, ns) ; k← kse[0 : 256]

3 : c0 ← kse[256 : 384] ; p0 ← kse[384 : 512]

4 : D ← ∅ ; R ← ∅

5 : AENC,DEC,IC,IC−1

INT-PTXT∗ ; return false

ENC(aux) // aux ∈ {0, 1}∗

1 : (st, m, x)←$ Samp(st, aux)
2 : if m = ⊥ : return ⊥
3 : M←M∪{m}
4 : ℓ← (128− (160 + |m|)) mod 128

5 : r←$ {0, 1}ℓ ; p← SHA-1(m) ∥ m ∥ r
6 : // Parse p into 128-bit blocks p1 ∥ . . . ∥ pt .

7 : for i = 1, . . . , t :

8 : ci ← X(pi ⊕ ci−1)⊕ pi−1

9 : c← c1 ∥ . . . ∥ ct

10 : preImg[c1]← (p1, m) ; return (m, x, c)

X(u) // |u| = 128

1 : if A[u] = ⊥ :

2 : A[u]←$ {0, 1}128

3 : if A[u] ∈ R :

4 : bad2 ← true

5 : A[u]←$ {0, 1}128 \ R // G3–G4

6 : abort(false) // G5

7 : B[A[u]]← u
8 : D ← D ∪ {u} ; R ← R∪ {A[u]}
9 : return A[u]

X−1(v) // |v| = 128

1 : if B[v] = ⊥ :

2 : B[v]←$ {0, 1}128

3 : if B[v] ∈ D :

4 : bad2 ← true

5 : B[v]←$ {0, 1}128 \ D // G3–G4

6 : abort(false) // G5

7 : A[B[v]]← v
8 : D ← D ∪ {B[v]} ; R ← R∪ {v}
9 : return B[v]

DEC(c)

1 : // Parse c into 128-bit blocks c1 ∥ . . . ∥ ct .

2 : if preImg[c1] = ⊥ :

3 : for i = 1, . . . , t :

4 : pi ← X−1(ci ⊕ pi−1)⊕ ci−1

5 : p← p1 ∥ . . . ∥ pt

6 : for i = 0, . . . , 15 :

7 : m← p[160 : |p| − i · 8]
8 : if SHA-1(m) = p[0 : 160] :

9 : if m ̸∈ M : abort(true)

10 : return m
11 : elseif preImg[c1] ̸= ⊥ :

12 : (p1, mENC)← preImg[c1]

13 : for i = 2, . . . , t :

14 : pi ← X−1(ci ⊕ pi−1)⊕ ci−1

15 : p← p1 ∥ . . . ∥ pt

16 : ω ← SHA-1(mENC) ∥ mENC

17 : for i = 0, . . . , 15 :

18 : if ω = p[0 : |p| − i · 8] :

19 : return mENC

20 : abort(false)

IC(i, u) // |i| = 256, |u| = 128

1 : if i = k :

2 : bad1 ← true

3 : return X(u) // G3

4 : if P[i] = ⊥ : P[i]←$ P(128)

5 : π ← P[i] ; return π(u)

IC−1(i, v) // |i| = 256, |v| = 128

1 : if i = k :

2 : bad1 ← true

3 : return X−1(v) // G3

4 : if P[i] = ⊥ : P[i]←$ P(128)

5 : π ← P[i] ; return π−1(v)

Fig. 47. Games G3–G5 for the proof of Proposition 5.

75



Adversary AGUESS
UPREF(iv)

1 : st← ε ; M← ∅

2 : c0 ← iv[0 : 128] ; p0 ← iv[128 : 256]

3 : D ← ∅ ; R ← ∅

4 : AENC,DEC,IC,IC−1

INT-PTXT∗

IC(i, u) // |i| = 256, |u| = 128

1 : GUESS(i)
2 : if P[i] = ⊥ : P[i]←$ P(128)

3 : π ← P[i] ; return π(u)

IC−1(i, v) // |i| = 256, |v| = 128

1 : GUESS(i)
2 : if P[i] = ⊥ : P[i]←$ P(128)

3 : π ← P[i] ; return π−1(v)

ENC(aux) // aux ∈ {0, 1}∗

X(u) // |u| = 128

X−1(v) // |v| = 128

// These oracles are identical to the

// corresponding oracles in game G4 of Fig. 47.

DEC(c)

1 : // Parse c into 128-bit blocks c1 ∥ . . . ∥ ct .

2 : if preImg[c1] = ⊥ :

3 : for i = 1, . . . , t :

4 : pi ← X−1(ci ⊕ pi−1)⊕ ci−1

5 : p← p1 ∥ . . . ∥ pt

6 : for i = 0, . . . , 15 :

7 : m← p[160 : |p| − i · 8]
8 : if SHA-1(m) = p[0 : 160] :

9 : if m ̸∈ M : abort(⊥)
10 : return m
11 : elseif preImg[c1] ̸= ⊥ :

12 : (p1, mENC)← preImg[c1]

13 : for i = 2, . . . , t :

14 : pi ← X−1(ci ⊕ pi−1)⊕ ci−1

15 : p← p1 ∥ . . . ∥ pt

16 : ω ← SHA-1(mENC) ∥ mENC

17 : for i = 0, . . . , 15 :

18 : if ω = p[0 : |p| − i · 8] :

19 : return mENC

20 : abort(⊥)

Fig. 48. Adversary AUPREF for the proof of Proposition 5. It simulates G4 for AINT-PTXT∗ .

76



Games G6–G11

1 : st← ε ; M← ∅ ; nn ←$ {0, 1}256

2 : kse ← SKDF.Ev(nn, ns) ; k← kse[0 : 256]

3 : c0 ← kse[256 : 384] ; p0 ← kse[384 : 512]

4 : D ← ∅ ; R ← ∅

5 : AENC,DEC,IC,IC−1

INT-PTXT∗ ; return false

ENC(aux) // aux ∈ {0, 1}∗

1 : (st, m, x)←$ Samp(st, aux)
2 : if m = ⊥ : return ⊥
3 : M←M∪{m}
4 : ℓ← (128− (160 + |m|)) mod 128

5 : r←$ {0, 1}ℓ ; p← SHA-1(m) ∥ m ∥ r
6 : // Parse p into 128-bit blocks p1 ∥ . . . ∥ pt .

7 : for i = 1, . . . , t :

8 : ci ← X(pi ⊕ ci−1)⊕ pi−1

9 : c← c1 ∥ . . . ∥ ct

10 : preImg[c1]← (p1, m) ; return (m, x, c)

X(u) // |u| = 128

1 : if A[u] = ⊥ :

2 : A[u]←$ {0, 1}128

3 : if A[u] ∈ R :

4 : abort(false) // G6–G9

5 : A[u]←$ {0, 1}128 \ R // G10–G11

6 : B[A[u]]← u
7 : D ← D ∪ {u} ; R ← R∪ {A[u]}
8 : return A[u]

X−1(v) // |v| = 128

1 : if B[v] = ⊥ :

2 : B[v]←$ {0, 1}128

3 : if B[v] ∈ D :

4 : abort(false) // G6–G9

5 : B[v]←$ {0, 1}128 \ R // G10–G11

6 : A[B[v]]← v
7 : D ← D ∪ {B[v]} ; R ← R∪ {v}
8 : return B[v]

IC(i, u) // |i| = 256, |u| = 128

1 : if P[i] = ⊥ : P[i]←$ P(128)

2 : π ← P[i] ; return π(u)

DEC(c)

1 : // Parse c into 128-bit blocks c1 ∥ . . . ∥ ct .

2 : if preImg[c1] = ⊥ :

3 : not-queried-before← (B[c1 ⊕ p0] = ⊥)
4 : if B[c1 ⊕ p0] ̸= ⊥ :

5 : bad5 ← true

6 : abort(false) // G11

7 : for i = 1, . . . , t :

8 : pi ← X−1(ci ⊕ pi−1)⊕ ci−1

9 : else : // B[c1 ⊕ p0] = ⊥

10 : for i = 1, . . . , t :

11 : vi ← ci ⊕ pi−1

12 : if B[vi] = ⊥ :

13 : pi ← X−1(vi)⊕ ci−1 // G6

14 : pi ←$ {0, 1}128 // G7–G11

15 : B[vi]← pi ⊕ ci−1 // G7–G11

16 : A[B[vi]]← vi // G7–G11

17 : else : // B[vi ] ̸= ⊥

18 : bad3 ← true

19 : pi ← X−1(vi)⊕ ci−1 // G6–G7

20 : pi ←$ {0, 1}128 // G8–G11

21 : p← p1 ∥ . . . ∥ pt

22 : for i = 0, . . . , 15 :

23 : m← p[160 : |p| − i · 8]
24 : if SHA-1(m) = p[0 : 160] :

25 : if not-queried-before :

26 : bad4 ← true

27 : abort(false) // G9–G11

28 : if m ̸∈ M : abort(true)

29 : return m
30 : elseif preImg[c1] ̸= ⊥ :

31 : (p1, mENC)← preImg[c1]

32 : for i = 2, . . . , t :

33 : pi ← X−1(ci ⊕ pi−1)⊕ ci−1

34 : p← p1 ∥ . . . ∥ pt

35 : ω ← SHA-1(mENC) ∥ mENC

36 : for i = 0, . . . , 15 :

37 : if ω = p[0 : |p| − i · 8] :

38 : return mENC

39 : abort(false)

IC−1(i, v) // |i| = 256, |v| = 128

1 : if P[i] = ⊥ : P[i]←$ P(128)

2 : π ← P[i] ; return π−1(v)

Fig. 49. Games G6–G11 for the proof of Proposition 5.

77



Adversary AEVAL,X,X−1

USUFF

1 : st← ε ; AENC,DEC,IC,IC−1

INT-PTXT∗

ENC(aux) // aux ∈ {0, 1}∗

1 : (st, m, x)←$ Samp(st, aux)
2 : if m = ⊥ : return ⊥
3 : ℓ← (128− (160 + |m|)) mod 128

4 : r←$ {0, 1}ℓ ; p← SHA-1(m) ∥ m ∥ r
5 : // Parse p into 128-bit blocks p1 ∥ . . . ∥ pt .

6 : c1 ← EVAL(p1)

7 : for i = 2, . . . , t :

8 : ci ← X(pi ⊕ ci−1)⊕ pi−1

9 : c← c1 ∥ . . . ∥ ct

10 : preImg[c1]← (p1, m) ; return (m, x, c)

IC(i, u) // |i| = 256, |u| = 128

IC−1(i, v) // |i| = 256, |v| = 128

// These oracles are identical to the

// corresponding oracles in game G11 of Fig. 49.

DEC(c)

1 : // Parse c into 128-bit blocks c1 ∥ . . . ∥ ct .

2 : if preImg[c1] = ⊥ :

3 : abort(c1)

4 : else : // preImg[c1] ̸= ⊥

5 : (p1, mENC)← preImg[c1]

6 : for i = 2, . . . , t :

7 : pi ← X−1(ci ⊕ pi−1)⊕ ci−1

8 : p← p1 ∥ . . . ∥ pt

9 : ω ← SHA-1(mENC) ∥ mENC

10 : for i = 0, . . . , 15 :

11 : if ω = p[0 : |p| − i · 8] :

12 : return mENC

13 : abort(⊥)

Fig. 50. Adversary AUSUFF for the proof of Proposition 5. It simulates G11 for AINT-PTXT∗ .

78



G EUF-CMA: Existential unforgeability of MTProto 1.0 encryption

In Appendix G.1, we define an intermediate security notion used in the proof for MTP-KE3st (Ap-
pendix H.2) that speaks to the unforgeability of outputs produced by CHv1. In Appendices G.2 and G.3,
we then define and prove a number of sub-notions that will be used to prove that this property holds, in
addition to any standard or non-standard assumptions. In Appendix G.4 we state the main result and
give its proof.

G.1 Definition of EUF-CMA

Here, we define a notion of message unforgeability for CHv1. This may seem counterintuitive at first
sight, as CHv1 is defined as a symmetric encryption scheme (albeit restricted for a particular message
type). However, in stage 3 of MTP-KE3st it is used in such a way that the decrypted plaintext must
always match a given message, essentially mandating that the output of CHv1 functions as a message
authentication code. The game Fig. 51 captures this usage scenario by explicitly requiring (mid, m) as
input to the VFY oracle. For a successful forgery, the adversary must query VFY with a message m that
was never used as part of a query to EVAL, but which passes all the checks imposed by CHv1.Dec as well
as matches the decrypted message.

Definition 17. Consider the game GEUF-CMA
CHv1,A in Fig. 51 with the MTProto 1.0 channel CHv1 defined in Fig. 8, and

an adversaryA. The advantage ofA in breaking the EUF-CMA-security of CHv1 is defined as AdvEUF-CMA
CHv1 (A) :=

Pr
[
GEUF-CMA
CHv1,A

]
.

Game GEUF-CMA
CHv1,A

1 : T← []

2 : M← ∅

3 : AEVAL,VFY()

4 : return false

GetKey(kid)

1 : if T[kid] = ⊥ :

2 : T[kid]←$ {0, 1}1024

3 : return T[kid]

EVAL(kid, (mid, m)) // |mid| = 64, |m| = 288

1 : akv1 ←$ GetKey(kid)
2 : M←M∪{(kid, m)}
3 : msk, c←$ CHv1.Enc(akv1, (mid, m))

4 : return msk, c

VFY(kid, (mid, m), (msk, c)) // |mid| = 64, |m| = 288

1 : akv1 ←$ GetKey(kid)
2 : out← CHv1.Dec(akv1, (msk, c))
3 : if out = ⊥ : return 0

4 : mid′, m′ ← out

5 : if mid′ ̸= mid∨m′ ̸= m : return 0

6 : if (kid, m) ̸∈ M : abort(true)

7 : return 1

Fig. 51. (Weak) existential unforgeability of CHv1 (Fig. 8) as used in the key exchange.

G.2 KDFv1 is a PRF

Here, we show that KDFv1, the key derivation function of CHv1, is a PRF under a suitable assumption
on SHACAL-1. Figure 52 shows the PRF game with an expanded version of KDFv1. We can reduce the
PRF-security of KDFv1 to a property of SHACAL-1 that we refer to as the 4PRF security with leakage
(Appendix C.1).

79



Game GPRF
KDFv1,D

1 : b←$ {0, 1}
2 : K← []

3 : akv1 ←$ {0, 1}1024

4 : b′ ←$ DROR()

5 : return b′ = b

ROR(msk) // |msk| = 128

1 : xA ← msk ∥ akv1[0 : 256] ∥ pad
2 : xB ← akv1[256 : 384] ∥ msk ∥ akv1[384 : 512] ∥ pad
3 : xC ← akv1[512 : 768] ∥ msk ∥ pad
4 : xD ← msk ∥ akv1[768 : 1024] ∥ pad
5 : A← IV160 +̂ SHACAL-1.Ev(xA, IV160)

6 : B← IV160 +̂ SHACAL-1.Ev(xB, IV160)

7 : C ← IV160 +̂ SHACAL-1.Ev(xC, IV160)

8 : D ← IV160 +̂ SHACAL-1.Ev(xD, IV160)

9 : y1 ← A ∥ B ∥ C[32 : 160] ∥ D[0 : 64]

10 : if K[msk] = ⊥ :

11 : K[msk]←$ {0, 1}512

12 : y0 ← K[msk]
13 : return yb

Fig. 52. Pseudorandomness of KDFv1, where pad is fixed, known SHA-1 padding for an input of length 384 bits.

Proposition 6. LetDPRF be an adversary against the PRF-security of KDFv1. Then we can construct an adversary
D4PRF against the 4PRF-security of SHACAL-1 (Definition 4) such that

AdvPRFKDFv1(DPRF) ≤ 2 · Adv4PRFSHACAL-1(D4PRF).

Proof. We start by defining two games, G′0 = G4PRF
SHACAL-1,D and G′1, which replaces the SHACAL-1 calls

in the original game with randomly generated values. In G′1, the adversary can no longer win, as it is
asked to distinguish between a random string and a fixed string masked by random values. We can thus
construct an adversary D4PRF (Fig. 53) against the 3PRF security of SHACAL-1 (Fig. 14) that simulates G′0
resp. G′1.

Adversary D4PRF

1 : b←$ {0, 1}
2 : K← []

3 : akv1 ←$ {0, 1}1024

4 : b′ ←$ DROR
PRF ()

5 : return b′ = b

RORSIM(msk) // |msk| = 128

1 : A← IV160 +̂ RoR(msk, A)

2 : B← IV160 +̂ RoR(msk, B)

3 : C ← IV160 +̂ RoR(msk, C)

4 : D ← IV160 +̂ RoR(msk, D)

5 : y1 ← A ∥ B ∥ C[32 : 160] ∥ D[0 : 64]

6 : if K[msk] = ⊥ :

7 : K[msk]←$ {0, 1}512

8 : y0 ← K[msk]
9 : return yb

Fig. 53. Adversary D4PRF.

We have Adv4PRFSHACAL-1(D4PRF) = Pr[G′0]− Pr
[
G′1
]
, and hence

AdvPRFKDFv1(DPRF) ≤ 2 · Adv4PRFSHACAL-1(D4PRF).

⊓⊔

80



G.3 UNPRED: Unpredictability of SEv1 on random keys

Here, we define an intermediate notion that requires SEv1, the symmetric encryption part of CHv1, to
have unpredictable outputs when random keys are used. In more detail, in Fig. 54 the adversary is
given access to a CHALL oracle, which requires the adversary to submit a message mid, m together with a
ciphertext c which upon decryption (with a random key identified by msk), produces the given (mid, m)
as part of the plaintext. The adversary is also provided an EXPOSE oracle, which allows it to learn selected
encryption keys, however it is then disallowed from calling CHALL for these keys.

Definition 18. Consider the game GUNPRED
SEv1,A in Fig. 54 with the symmetric encryption scheme SEv1 defined

in Fig. 8, and an adversary A. The advantage of A in breaking the UNPRED-security of SEv1 is defined as
AdvUNPRED

SEv1 (A) := Pr
[
GUNPRED
SEv1,A

]
.

Game GUNPRED
SEv1,A

1 : K,S← []

2 : AEXPOSE,CHALL()

3 : return false

EXPOSE(msk)

1 : S[msk]← true

2 : return K[msk]

CHALL((mid, m), (msk, c))

1 : if ¬S[msk] :

2 : if K[msk] = ⊥ :

3 : K[msk]←$ {0, 1}512

4 : k, iv← K[msk]
5 : out← SEv1.Dec(k, iv, c)
6 : if out ̸= ⊥ :

7 : _, mid′, m′ ← out

8 : if mid′ = mid∧m′ = m :

9 : abort(true)

10 : return ⊥

Fig. 54. Unpredictability of SEv1 with respect to chosen inputs.

Proposition 7. Let A be an adversary against the UNPRED-security of SEv1 (Definition 18) making nCHALL

queries to its CHALL oracle. Then AdvUNPREDSEv1 (A) ≤ nCHALL

2128 .

Proof. We proceed along the lines of the UNPRED proof in [AMPS23, Appendix E.6]. First, we define a
game G (Fig. 55) similar to GUNPRED

SEv1,A , however in G the CHALL oracle only decrypts the first two blocks
of c and does not use the input m. Hence, the game G is easier to win than the original game, but is
indistinguishable to A up to that point since CHALL always returns ⊥. We have

AdvUNPREDSEv1 (A) ≤ Pr[G].

Let s = 00000000 ∥ 00000028 be a fixed 64-bit string. The winning condition in G can be summarised as
requiring the adversary to produce mid, c1, c2 such that the following holds:

c0 = AES-256.Enc(k, (mid⊕ c1[0 : 64]) ∥ (s⊕ c1[64 : 128]))⊕ c2 ⊕ AES-256.Dec(k, c1 ⊕ p0),

where c0, p0 are random 128-bit values generated as part of the IV and unknown to the adversary.

For a given msk, every query to CHALL can be seen as a guess for c0. Calling EXPOSE will reveal c0 to the
adversary, but it is forbidden from calling CHALL on such msk afterwards. Over all msks that A could
query CHALL for, we get

Pr[G] ≤ nCHALL

2128 .

81



Game G

1 : K,S← []

2 : AEXPOSE,CHALL()

3 : return false

EXPOSE(msk)

1 : S[msk]← true

2 : return K[msk]

CHALL((mid, m), (msk, c1 ∥ c2))

1 : if ¬S[msk] :

2 : if K[msk] = ⊥ :

3 : K[msk]←$ {0, 1}512

4 : k, iv← K[msk] ; c0 ∥ p0 ← iv
5 : p1 ← AES-256.Dec(k, c1 ⊕ p0)⊕ c0

6 : p2 ← AES-256.Dec(k, c2 ⊕ p1)⊕ c1

7 : if p2 = mid ∥ 00000000 ∥ 00000028 :

8 : abort(true)

9 : return ⊥

Fig. 55. Game G for the proof of Proposition 7.

G.4 Proof for EUF-CMA of CHv1

Proposition 8. Let A be an adversary against the EUF-CMA-security of the channel CHv1 (Definition 17) with
at most nkid long-term symmetric keys, making at most nVFY queries to the VFY oracle. Then there exist adversaries
D4PRF against the 4PRF-security of SHACAL-1 (Definition 4) and AUPCR against the UPCR-security of Hv1
(Definition 8) such that

AdvEUF-CMA
CHv1 (A) ≤ nkid ·

(
2 · Adv4PRFSHACAL-1(D4PRF) +

nVFY

2128 + AdvUPCRHv1 (AUPCR)
)

.

Proof. We proceed via a sequence of games shown in Figs. 56 and 59.

G0. The game G0 is equivalent to the game GEUF-CMA
CHv1,A , so we have

AdvEUF-CMA
CHv1 (A) = Pr[G0].

G0 → G1. The game G1, shown in Fig. 56, only allows the adversary to query EVAL and VFY for a single
value of kid. Since kid only impacts the choice of the key akv1, we omit it showing it as input to EVAL and
VFY oracles. More formally, given an adversary Amulti playing in G0 and making queries for at most nkid
kid values, we can build an adversary Asingle playing in G1 which queries a single kid value. Asingle must
guess the value of kid that will result in a forgery and use its own oracles to answer Amulti’s queries for
this kid; all other queries can be fully simulated.

Note that the game G1 also places the mid′, m′ check in VFY earlier in the execution than in G0, however
the resulting output is the same. We have

Pr[G0] ≤ nkid · Pr[G1].

G1 → G2. The game G2, shown in Fig. 56, replaces the real calls to KDFv1 (Fig. 8) with randomly sampled
keys, which are tracked using the table K. Straightforwardly, we construct an adversary DPRF (Fig. 57)
against the PRF security of KDFv1 that simulates G1 resp. G2 for A. We have

Pr[G1]− Pr[G2] ≤ AdvPRFKDFv1(DPRF).

Using Proposition 6, we have

AdvPRFKDFv1(DPRF) ≤ 2 · Adv4PRFSHACAL-1(D4PRF).

82



Games G1–G4

1 : K← [] ; S← [] // G3–G4

2 : M← ∅

3 : akv1 ←$ {0, 1}1024 // G1

4 : AEVAL,VFY()

5 : return false

EVAL(mid, m) // |mid| = 64, |m| = 288

1 : M←M∪{m}
2 : r←$ {0, 1}128

3 : msk← Hv1.Ev(r, mid, m)

4 : S[msk]← true // G3–G4

5 : k, iv← KDFv1.Ev(akv1, msk) // G1

6 : if K[msk] = ⊥ : K[msk]←$ {0, 1}512 // G2–G4

7 : k, iv← K[msk] // G2–G4

8 : c←$ SEv1.Enc(k, iv, (r, mid, m))

9 : return msk, c

VFY((mid, m), (msk, c)) // |mid| = 64, |m| = 288

1 : k, iv← KDFv1.Ev(akv1, msk) // G1

2 : if K[msk] = ⊥ : K[msk]←$ {0, 1}512 // G2–G4

3 : k, iv← K[msk] // G2–G4

4 : out← SEv1.Dec(k, iv, c)
5 : if out = ⊥ : return 0

6 : r, mid′, m′ ← out
7 : if mid′ ̸= mid∨m′ ̸= m : return 0

8 : if S[msk] = ⊥ : // G3–G4

9 : bad0 ← true // G3–G4

10 : return 0 // G4

11 : msk′ ← Hv1.Ev(r, mid′, m′)
12 : if msk′ ̸= msk : return 0

13 : if m ̸∈ M : abort(true)

14 : return 1

Fig. 56. Games G1–G4. Expanded code of CHv1 is shown in gray.

83



Adversary DPRF

1 : M← ∅

2 : AEVALSIM,VFYSIM()

3 : return 0

EVALSIM((mid, m)) // |mid| = 64, |m| = 288

1 : M←M∪{m}
2 : r←$ {0, 1}128

3 : msk← Hv1.Ev(r, mid, m)

4 : k, iv←$ ROR(msk)
5 : c←$ SEv1.Enc(k, iv, (r, mid, m))

6 : return msk, c

VFYSIM((mid, m), (msk, c)) // |mid| = 64, |m| = 288

1 : k, iv←$ ROR(msk)
2 : out← SEv1.Dec(k, iv, c)
3 : if out = ⊥ : return 0

4 : r, mid′, m′ ← out

5 : msk′ ← Hv1.Ev(r, mid′, m′)

6 : if msk′ ̸= msk : return 0

7 : if mid′ ̸= mid∨m′ ̸= m : return 0

8 : if m ̸∈ M : abort(1)

9 : return 1

Fig. 57. Adversary DPRF.

G2 → G3. The game G3, shown in Fig. 56, introduces a bad0 event if the adversary queries VFY with a
value of msk that has never been output by EVAL and mid, m which are equal to the decrypted mid′, m′; to
track this event, it uses a new table S. Since nothing else in the game changes, we have

Pr[G3] = Pr[G2].

G3 → G4. In the game G4, shown in Fig. 56, VFY returns 0 if bad0 is set. We reduce this to UNPRED-
security (Definition 18) a notion that concerns the unpredictability of SEv1 when random keys are used.
This proof step is very similar to the transition G4 → G5 in the integrity proof of [AMPS22], which used
a comparable notion of unpredictability in the context of the MTProto 2.0 channel.

We build an adversaryAUNPRED (Fig. 58) that simulates G4 forA: if the value of msk input to the EVALSIM
and VFYSIM oracles was previously unseen, AUNPRED calls its own oracles EXPOSE and CHALL, and
otherwise it proceeds as in the original game. If EVALSIM is called before VFYSIM on some msk, EXPOSE
will not produce a key, so the behaviour in this case will also be identical to the original game. If VFYSIM
is called first, AUNPRED will either return 0 (which happens when CHALL returns ⊥ because out = ⊥,
mid′ ̸= mid or m′ ̸= m) or win in its own game (because A triggers the condition that would have set bad0
in G4). We have

Pr[G3]− Pr[G4] ≤ Pr[bad0] ≤ AdvUNPREDSEv1 (AUNPRED).

Using Proposition 7, we can write

AdvUNPREDSEv1 (AUNPRED) ≤
nVFY

2128 ,

where nVFY is the number of queries the adversary makes to its CHALL resp. VFY oracle.

G4 → G5. The game G5, shown in Fig. 59, is functionally equivalent to G4. However, we introduce a
number of syntactic changes. We move the check on S[msk] to the beginning of the game, since S[msk] = ⊥

84



Adversary AUNPRED

1 : K,S← []

2 : M← ∅

3 : AEVALSIM,VFYSIM()

4 : return

EVALSIM(mid, m) // |mid| = 64, |m| = 288

1 : M←M∪{m}
2 : r←$ {0, 1}128

3 : msk← Hv1.Ev(r, mid, m)

4 : if S[msk] = ⊥ :

5 : K[msk]← EXPOSE(msk)
6 : if K[msk] = ⊥ :

7 : K[msk]←$ {0, 1}512

8 : k, iv← K[msk]
9 : c←$ SEv1.Enc(k, iv, (r, mid, m))

10 : S[msk]← true

11 : return msk, c

VFYSIM((mid, m), (msk, c)) // |mid| = 64, |m| = 288

1 : if S[msk] = ⊥ :

2 : CHALL((mid, m), (msk, c))
3 : return 0

4 : if K[msk] = ⊥ :

5 : K[msk]←$ {0, 1}512

6 : k, iv← K[msk]
7 : out← SEv1.Dec(k, iv, c)
8 : if out = ⊥ : return 0

9 : r, mid′, m′ ← out

10 : if mid′ ̸= mid∨m′ ̸= m : return 0

11 : msk′ ← Hv1.Ev(r, mid′, m′)

12 : if msk′ ̸= msk : return 0

13 : if m ̸∈ M : abort

14 : return 1

Fig. 58. Adversary AUNPRED.

causes the VFY oracle to return 0 regardless of the order it is processed in. We also change the order of the
calls to SEv1 and Hv1 such that only the first block of c is decrypted before the msk check. The msk check
itself is done using the input mid, m rather than the decrypted values mid′, m′ – this is equivalent, since
the oracle can only return 1 if these values match. In more detail, instead of decrypting, using mid′, m′

to check msk and then checking mid′, m′ = mid, m, we use mid, m to check msk, then decrypt and check
mid′, m′ = mid, m. There is nothing for the adversary gain since all checks must pass, no matter the order.
Finally, we set the flag bad1 if, after the msk check, it is the case that m /∈ M. We have

Pr[G5] = Pr[G4].

G5 → G6. The game G6, shown in Fig. 59, returns false after setting bad1. We can reduce the probability
that bad1 will be set to the collision resistance of Hv1 under unpredictable prefixes (Definition 8). We
build an adversary AUPCR (Fig. 60) that simulates G6 for A. To generate msk during EVALSIM, it calls its
own oracle EVAL, which also provides it with a value r. It then uses r to construct the ciphertext c under a
key it knows. During VFYSIM, whenever A would have set bad1, AUPCR can use the decrypted value r

85



Games G5–G6

1 : K,S← []

2 : M← ∅

3 : AEVAL,VFY()

4 : return false

EVAL(mid, m) // |mid| = 64, |m| = 288

1 : M←M∪{m}
2 : r←$ {0, 1}128

3 : msk← Hv1.Ev(r, mid, m)

4 : S[msk]← true

5 : if K[msk] = ⊥ : K[msk]←$ {0, 1}512

6 : k, iv← K[msk]
7 : c←$ SEv1.Enc(k, iv, (r, mid, m))

8 : return msk, c

VFY((mid, m), (msk, c)) // |mid| = 64, |m| = 288

1 : if S[msk] = ⊥ : return 0

2 : c1 ∥ . . . ∥ c5 ← c
3 : k, iv← K[msk]
4 : r, _, _← SEv1.Dec∗(k, iv, c1)

5 : msk′ ← Hv1.Ev(r, mid, m)

6 : if msk′ ̸= msk : return 0

7 : if m ̸∈ M :

8 : bad1 ← true

9 : abort(false) // G6

10 : out← SEv1.Dec(k, iv, c)
11 : if out = ⊥ : return 0

12 : r′, mid′, m′ ← out
13 : if mid′ ̸= mid∨m′ ̸= m : return 0

14 : if m ̸∈ M : abort(true)

15 : return 1

Fig. 59. Games G5–G6. The lines that are shared by all games but formally differ from G4 are also highlighted in green.
We use SEv1.Dec∗ as shorthand for executing SEv1.Dec to only decrypt the first ciphertext block (which always
succeeds).

86



as well as the input mid, m as a solution to its own game. This is because to reach this point in the game,
msk = Hv1.Ev(r, mid, m) is such that there was at least one previous call to EVALSIM (and therefore to
EVAL) that produced this msk, so msk ∈ H; but m /∈ M, hence the winning condition of the UPCR game
is satisfied. We have

Pr[G5]− Pr[G6] ≤ Pr[bad1] ≤ AdvUPCRHv1 (AUPCR).

Adversary AUPCR

1 : K,S← []

2 : M← ∅

3 : AEVALSIM,VFYSIM()

4 : return ⊥

EVALSIM(mid, m) // |mid| = 64, |m| = 288

1 : M←M∪{m}
2 : r, msk← EVAL(mid, m)

3 : S[msk]← true

4 : if K[msk] = ⊥ : K[msk]←$ {0, 1}512

5 : k, iv← K[msk]
6 : c←$ SEv1.Enc(k, iv, (r, mid, m))

7 : return msk, c

VFYSIM((mid, m), (msk, c)) // |mid| = 64, |m| = 288

1 : if S[msk] = ⊥ : return 0

2 : c1 ∥ . . . ∥ c5 ← c
3 : k, iv← K[msk]
4 : r, _, _← SEv1.Dec∗(k, iv, c1)

5 : msk′ ← Hv1.Ev(r, mid, m)

6 : if msk′ ̸= msk : return 0

7 : if m ̸∈ M :

8 : abort(r, mid, m)

9 : out← SEv1.Dec(k, iv, c)
10 : if out = ⊥ : return 0

11 : r′, mid′, m′ ← out

12 : if mid′ ̸= mid∨m′ ̸= m : return 0

13 : return 1

Fig. 60. Adversary AUPCR.

G6. In the game G6, the winning condition in VFY can never be reached by the adversary. We have

Pr[G6] = 0.

87



H Main proofs

H.1 Proof for the two-stage protocol

Here, we provide a proof for Theorem 1.

Proof. We proceed via a sequence of games. In the whole proof, we do not explicitly show the TL schema
wrappers that format every message on the byte level unless it is relevant. For brevity, we shorten
certain stage 1 messages to only refer to the cryptographically relevant variables, e.g. we write n, ns, ...
for n, ns, prod′,F . When we describe modified SEND queries, we assume that the behaviour still follows
the prescribed order of messages in MTP-KE2st (which the TL schema encodes and enables to check),
i.e. processing out-of-order messages results in the receiver session rejecting.

To simplify the presentation, in all of the games we omit the predicate Auth, since MTP-KE2st does not
have non-testable stages. We also remove the NEWSECRET oracle, as MTP-KE2st does not use long-term
symmetric keys.

G0. The game G0 is equivalent to the game GMulti-Stage
MTP-KE2st,Urole,A, so we have

AdvMulti-Stage
MTP-KE2st,Urole(A) = AdvG0

MTP-KE2st
(A) = 2 · Pr[G0]− 1.

From now on, we omit displaying Urole in the advantage terms.

G0 → G1. The game G1 is amended to set the bad0 flag and return 0 if there are two honest initiator
sessions that collide on n and nn, as shown in Fig. 61. By Lemma 1, we have

Pr[G0]− Pr[G1] ≤ Pr[bad0].

By the birthday bound, we have

Pr[bad0] ≤
n2
S

2 · 2128+256

and hence

AdvG0
MTP-KE2st

(A) ≤
n2
S

2384 + Adv
G1
MTP-KE2st

(A).

To argue that in G1, the predicate Sound (as defined in Fig. 4) is always satisfied, we need to show the
following properties:

1. At most two sessions can be partnered.
First, note that the public key pk is part of sid.1, which means that different responders have different
session identifiers by default. However, the matching of session identifiers could be impacted by
collisions in the initiator-chosen nonces n, nn. The nonce n is part of sid.1 in plaintext, but nn appears
in encrypted form. We have that if nn ̸= n′n, then the corresponding c0 ̸= c′0 by the correctness of
TOAEP+ (for honestly produced c0 under the same public key pk). Further, since sid.1 is a prefix of
sid.2, a collision in stage 2 implies a collision in stage 1. The game G1 returns 0 if there is a collision in
n, nn. Without such a collision, three sessions cannot accept the same sid in any stage.

The remaining soundness properties thus assume that “partnered sessions” always mean only a
single pair.

2. Partnered sessions must have different roles.
The TL schema defines different message headers for each protocol message, thereby ensuring that
there can be no role confusion.

3. Session identifiers cannot match across different stages.
This holds trivially as each stage adds at least one message to the identifier.

88



G0–G1

1 : LK,Kpub ← Init(Urole)
2 : LS ← [] ; Cpub ← ∅

3 : btest ←$ {0, 1}
4 : lost← false

5 : b′test ← ANEWSESSION,...,TEST(Kpub)

6 : if ∃s, s′ ∈ LS, n ∈ {0, 1}128, nn ∈ {0, 1}256 : (s ̸= s′

7 : ∧ s.uid.role = s′.uid.role = I∧ s.sskey.1 = s′.sskey.1 = nn

8 : ∧ s.sid.1 = (_, n, _, _) ∧ s′.sid.1 = (_, n, _, _)) :

9 : bad0 ← true

10 : return 0 // G1

11 : if ¬Sound :

12 : return 1

13 : if ¬Fresh :

14 : lost← true

15 : return b′test = btest ∧ lost = false

Fig. 61. Games G0–G1 for the proof of Multi-Stage-security of MTP-KE2st.

4. Partnered sessions must agree on contributive identifiers.
MTP-KE2st always sets s.cid.i = s.sid.i upon acceptance.

5. Partnered sessions must output the same session key.
In the first stage, the session id includes the public key pk of the responder, the unencrypted nonces
n, ns exchanged between the client and the server and the encrypted ciphertext c0 which carries nn.
An honest session of a user U such that U.role = I will only include c0 in its session id if it had
produced it as c0 ← TOAEP+.Enc(pk, m0) where m0 includes n, ns and nn. A partnered session owned
by a user V such that V.role = R will only include c0 in its session id if it can decrypt it to recover n
and ns. By the correctness of TOAEP+, this means that V will also recover the correct nn.

In the second stage, the session key is fully determined by the values ga mod p and gb mod p.

Therefore, in both stages, the session id determines all the inputs from which the session key is
derived.

6. Responder-only authentication.
Let s, s′ denote the partnered sessions, with s.uid = U, s′.uid = V. We want to show that if s.role = I

and s′.role = R, then U had set its partner identity correctly as s.vid = V. This is ensured via the
inclusion of pk in s.sid = s′.sid, as it is associated with V during the key setup for each session.

Thus, in the games that follow, we may assume that Sound = true.

G1 → G2. The game G2 differs from G1 in that it only allows the adversary to submit a single TEST query.
We can build a reduction from the adversary Amulti making at most nT ≤ M · nS = 2nS TEST queries in
G1 to an adversary Asingle that makes a single query in G2. Asingle first guesses a value t ∈ {1, . . . , nT},
and then answers the first t− 1 TEST queries of Amulti by calling REVEAL, the t-th TEST query by calling
its own TEST oracle and the remaining queries by sampling a random session key.

For stage 1 queries,Asingle can do this simulation perfectly since sid.1 can be computed from the transcript
of each accepting session and soAsingle can keep track of which sessions are partnered, ensuring consistent
outputs for queries for partnered sessions. In more detail, this means that Asingle will answer any TEST
query for a session whose partner was already tested with ⊥, keep track of which sessions are considered

89



revealed as well as ensure that the stage 1 session keys are set consistently for sessions whose partners
were tested (since we have USE.1 = internal).

For stage 2 queries, sid.2 contains the plaintext values ga mod p, gb mod p, so Asingle must first obtain
the stage 1 session key before it can match partnered sessions. First, observe that since sid.1 is contained
within sid.2, those sessions that were not partnered in stage 1 will not be partnered in stage 2, so we
only need to consider the case where we know that the sessions in question agree on n, ns and nn. Then,
suppose thatAmulti tests a given session with the label label at stage 2. If it tests or reveals the same session
at stage 1, such a query would mark the stage 2 session key as revealed due to key dependence, causing
the lost flag to be set to true at the end of the execution, which Asingle can simulate as described below.
We can now consider the other case, i.e. Amulti does not test or reveal the same session at stage 1. Before
answering a SEND query for label that would set stexec to accepted2 (which must happen before the
session can be tested at stage 2),Asingle can call REVEAL(label, 1) in its own game to obtain nn and decrypt
the ciphertexts containing the values ga mod p, gb mod p needed to determine sid.2. The REVEAL query
does not introduce any differences from the simulated game, enabling Asingle to determine partnered
sessions at the time when each session accepts.

Finally, to avoid a mismatch arising if Amulti causes the lost flag to be set true, Asingle makes a REVEAL
query for the particular session that would have set the flag in G1 (either because of the conditions within
the simulated TEST queries when j ̸= t or the check at the end of the game which searches for sessions
where the same key was tested and revealed).

Following [DFGS21, Appendix A], we get

2 · Pr[G2]− 1 ≥ 1
nT
· (2 · Pr[G1]− 1)

and hence
Adv

G1
MTP-KE2st

(Amulti) ≤ 2nS · AdvG2
MTP-KE2st

(Asingle).

From now on, we will refer to the tested session stest, and to the adversary Asingle as A.

Recall that regardless of the tested stage, we aim for responder-only authentication, but forward secrecy
is only expected from stage 2. We now split our analysis depending on whether the adversary tests stest
during stage 1 or stage 2. These are disjoint events, hence:

AdvG2
MTP-KE2st

(A) ≤ Adv
G2,stage 1 tested
MTP-KE2st

(A) + Adv
G2,stage 2 tested
MTP-KE2st

(A).

Stage 1. We can assume that the session stest is owned by either an honest initiator whose intended
partner is honest or an honest responder partnered with an honest initiator after stage 1. This is because
there is no forward secrecy for this stage, so we only need to consider honest intended partners and
honest responders, i.e. if the public-key keypair used by stest is corrupted at any point, stest.sskey.1 is
always considered revealed. We further split our analysis into two cases: Case A in which stest is not
partnered with any session at stage 1 (and therefore stest.role = I, since testing a responder without a
partner sets the lost flag to true), and Case B in which stest does have a stage 1 partner. The games GA.0
and GB.0 are otherwise equivalent to G2 where A tests stage 1. We have:

Adv
G2,stage 1 tested
MTP-KE2st

(A) ≤ Adv
GA.0
MTP-KE2st

(A) + Adv
GB.0
MTP-KE2st

(A).

Case A: Honest initiator with no partner. First, note that initiators may accept at stage 1 without there
being a corresponding partnered session because MTP-KE2st only provides implicit authentication at
stage 1. However, we may assume that stest’s intended partner identified by its public key is honest.

GA.0. The game GA.0 is equivalent to the game G2 where A tests stage 1 and stest is an honest initiator
session without a partner.

90



GA.0 → GA.1. Let npk be the number of public-key keypairs generated in the game, which is equivalent
to the number of users with the role of a responder. Consider the game GA.1, which is equivalent to GA.0
except that at the beginning, the game guesses which of the npk potential responders will be chosen in
stest as intended partner and aborts when the guess is wrong. That is, if the guessed user is Vtest, the
game aborts when stest.vid ̸= Vtest.

We have
Adv

GA.0
MTP-KE2st

(A) ≤ npk · Adv
GA.1
MTP-KE2st

(A).

GA.1 → GA.2. Let the game GA.2 be as the game GA.1 with the following difference in the handling
of SEND queries during stage 1: SEND(stest.label, (n, ns, ...)) for some n, ns sets a random session key
stest.sskey.1←$ {0, 1}256 instead of using nn.

Using an adversary A against the Multi-Stage-security of MTP-KE2st, we build an adversary AIND-CCA
against the IND-CCA-security of TOAEP+ that simulates GA.1 or GA.2 depending on the challenge
bit bchall in its game. AIND-CCA samples a random bit btest ←$ {0, 1} at the start and inserts the public
key pk∗ given to it in the IND-CCA game as the public key of Vtest. It otherwise generates all key pairs
as normal for the Multi-Stage-security game. Thereafter, the adversary only modifies the SEND oracle as
follows:

– Upon receiving SEND(stest.label, (n, ns, ...)) for some n, ns, instead of running MTP-KE2st the adversary
AIND-CCA samples two independent values nn ←$ {0, 1}256, r←$ {0, 1}256 and computes

m0
0 ← prod′, p′, q′, n, ns, nn, dc

m1
0 ← prod′, p′, q′, n, ns, r, dc

for suitable values of p′, q′, dc according to MTP-KE2st.

Then,AIND-CCA computes c∗0 ← ENC(m0
0, m1

0) using its own oracle. It sets s.sskey.1← nn and continues
as in the usual Multi-Stage game, returning c∗0 , running1 as output to A.

– Upon receiving SEND(s.label, (n′, n′s, ..., c0)) for a session s ̸= stest such that s.cid.1 = (pk∗, n′, n′s) for
some n′, n′s, it computes m0 ← DEC(c0), and if m0 ̸= ⊥ and n′, n′s are included in m0, it sets s.sskey.1
as the correct substring of m0 and returns paused to A. Otherwise, it returns ⊥, rejected1 to A. Note
that if c0 = c∗0 , we will necessarily get m0 = ⊥, but since stest has no partner, this means that at least
one of the n, ns values in s.cid.1 = (pk∗, n, ns) differs from n′, n′s and so MTP-KE2st would have also
output ⊥ in this case.

AIND-CCA outputs its own guess as b′chall ← b′test = btest ∧ lost = false where b′test is the bit guess ofAKE
and the lost flag is set under the same conditions as in both games GA.1, GA.2.

If the challenge bit bchall = 0 in the IND-CCA game, then the tested session will produce c0 =
TOAEP+.Enc(pk∗, m1

0) (where m0
0 contains nn) just as in the game GA.1. Otherwise, if bchall = 1, then the

ciphertext c0 = TOAEP+.Enc(pk∗, m1
0) will be independent of the stage 1 session key nn, capturing the be-

haviour of the game GA.2. We have Pr
[
b′chall = 1

∣∣ bchall = 1
]
= Pr[GA.1] and Pr

[
b′chall = 1

∣∣ bchall = 0
]
=

Pr[GA.2], hence

Adv
GA.1
MTP-KE2st

(A) ≤ Adv
GA.2
MTP-KE2st

(A) + 2 · AdvIND-CCA
TOAEP+(AIND-CCA).

GA.2. Observe that if the adversary makes a TEST(stest, 1) query in GA.2, it will always receive a random
key irrespective of the challenge bit btest. Since the agreed session key is now independent of the protocol
messages, the adversary can only win by guessing and we have

Adv
GA.2
MTP-KE2st

(A) = 0.

Case B: Partner of tested session exists. We now consider the case that the tested session does have a
partner at stage 1.

91



GB.0. The game GB.0 is equivalent to the game G2 where A tests stage 1 and stest is an honest session
with a partner.

GB.0 → GB.1. Consider the game GB.1, which is equivalent to GB.0 except that at the beginning, the
game guesses which of the npk potential responders will stest choose as intended partner, as well as
which of the nS sessions will be partnered with stest after stage 1 and aborts when the guess is wrong.
That is, if the guessed user is Vtest and the guessed session is s′test, the game aborts if stest.vid ̸= Vtest or
s′test.sid.1 ̸= stest.sid.1.

We have
Adv

GB.0
MTP-KE2st

(A) ≤ npk · nS · Adv
GB.1
MTP-KE2st

(A).

Note that in this game, stest and s′test may be either an initiator and a responder or vice versa (correct
roles are ensured by the soundness predicate). In the pair (stest, s′test), denote the initiator by sI and the
responder by sR.

GB.1 → GB.2. Let the game GB.2 be as the game GB.1 with the following difference in the handling of SEND
queries during stage 1: SEND(sI.label, (n, ns, ...)) (for some n, ns) sets a random session key sI.sskey.1←$

{0, 1}256 instead of using the generated nn. For consistency, the game ensures that sR.sskey.1← sI.sskey.1.

Using an adversary A against the Multi-Stage-security of MTP-KE2st, we build an adversary AIND-CCA
against the IND-CCA of TOAEP+ that simulates GB.1 or GB.2 depending on the challenge bit in its game.
AIND-CCA inserts the public key pk∗ given to it in the IND-CCA game as the public key of sR.uid. Thereafter,
the adversary only modifies the SEND oracle as follows:

– Upon receiving a query SEND(sI.label, (n, ns, ...)) for n such that sI.cid.1 = (pk∗, n) and some ns,
instead of running MTP-KE2st the adversary AIND-CCA samples two independent values nn ←$

{0, 1}256, r←$ {0, 1}256 and computes

m0
0 ← prod′, p′, q′, n, ns, nn, dc

m1
0 ← prod′, p′, q′, n, ns, r, dc

for suitable values of p′, q′, dc according to MTP-KE2st.

Then, AIND-CCA computes c∗0 ← ENC(m0
0, m1

0) using its own oracle. It sets sI.sskey.1 ← nn and
continues as in the usual Multi-Stage game, returning c∗0 as part of its output to A.

– Upon receiving SEND(sR.label, (n, ns, ..., c∗0)) for n, ns such that sR.cid.1 = (pk∗, n, ns), the adversary
sets sR.sskey.1← nn from the previous modified SEND query for sI and returns paused to A (if there
was no such query, it returns ⊥, rejected1 just like MTP-KE2st).

– Upon receiving SEND(s.label, (n′, n′s, ..., c0)) for a session s = sR with c0 ̸= c∗0 or a session s ̸= sR such
that s.cid.1 = (pk∗, n′, n′s), it computes m0 ← DEC(c0), sets s.sskey.1 as the correct substring of m0 and
returns paused to A (if m0 = ⊥ or n′, n′s are not included in m0, it returns ⊥, rejected1).

AIND-CCA outputs its own guess as b′chall ← b′test = btest ∧ lost = false where b′test is the bit guess ofAKE
and the lost flag is set under the same conditions as in both games GB.1, GB.2.

If the challenge bit bchall = 0 in the IND-CCA game, then the tested session will exchange c0 =
TOAEP+.Enc(pk∗, m0

0) (where m0
0 contains nn) with its partnered session just as in the game GB.1. Oth-

erwise, if bchall = 1, then the ciphertext c0 = TOAEP+.Enc(pk∗, m1
0) will be independent of the stage 1

session key nn, capturing the behaviour of the game GB.2. We have

Adv
GB.1
MTP-KE2st

(A) ≤ Adv
GB.2
MTP-KE2st

(A) + 2 · AdvIND-CCA
TOAEP+(AIND-CCA).

GB.2. Observe that if the adversary makes a TEST(stest, 1) query in GB.2, it will always receive a random
key irrespective of the challenge bit btest, so that it can only win by guessing and we have

Adv
GB.2
MTP-KE2st

(A) = 0.

92



Stage 2. Consider the game G2 where the adversary makes a TEST(stest, 2) query. We consider forward
secrecy, so the adversary is allowed to make a CORRUPT query for the tested session stest or its partner
after stest.stexec = accepted2 is set (the CORRUPT query can be issued before or after the TEST query).
We can assume that stest is owned either by an honest initiator whose intended partner may only be
corrupted after stest completes stage 2, or by a responder who may only be corrupted after completing
stage 2 and who is partnered with an honest initiator.

We will again consider two cases: Case C in which stest.uid.role = I and stest does not have a contributive
partner established during stage 1 (in particular, there does not exist a session s′test ̸= stest such that
s′test.cid.1 = stest.cid.1 = (pk, n, ns) for some pk, n, ns), and Case D in which stest does have a contributive
partner. The games GC.0 and GD.0 are otherwise equivalent to G2 where A tests stage 1.

Adv
G2,stage 2 tested
MTP-KE2st

(A) ≤ Adv
GC.0
MTP-KE2st

(A) + Adv
GD.0
MTP-KE2st

(A).

Case C: Honest initiator with no partner.

GC.0. This game is equivalent to G2 where A tests stage 2 and stest is an honest initiator session without
a contributive partner in stage 1.

GC.0 → GC.1. Similarly to GA.1, take the game GC.1, which is equivalent to GC.0 except that at the
beginning, the game guesses which of the npk potential responders will stest choose as intended partner
and aborts when the guess is wrong.

We have
Adv

GC.0
MTP-KE2st

(A) ≤ npk · Adv
GC.1
MTP-KE2st

(A).

Let Vtest be the intended partner, i.e. stest.vid = Vtest.

GC.1 → GC.2. Next, consider the game GC.2, which is equivalent to GC.1 except that the game sets
the flag bad1 to true and aborts if stest recovers m1 ̸= ⊥ such that n, ns from stest.sid.1 appear in m1 as
m1[32 : 160], m1[160 : 288] respectively. We have

Pr[GC.1]− Pr[GC.2] ≤ Pr
[
bad

GC.2
1

]
.

IND-CCA. To bound Pr
[
bad

GC.2
1

]
, we first use an additional game hop to a game GC.2∗ . This intermediate

game differs from GC.2 in that SEND(stest.label, (n, ns, ...)) (for some n, ns) sets a random session key
stest.sskey.1←$ {0, 1}256 instead of using nn.

Using an adversary A against the Multi-Stage-security of MTP-KE2st, we build an adversary AIND-CCA
against the IND-CCA of TOAEP+ that simulates GC.2 or GC.2∗ depending on the challenge bit in its game.
The construction is the same as in Case A, in particular as in the transition between the games GA.1
and GA.2.

In contrast to the above transition, however, here the simulation is not perfect: if Amakes a CORRUPT
query for Vtest, AIND-CCA cannot reveal the private key corresponding to the challenge public key pk∗ as
it does not possess it. However, we only consider what happens before the flag bad1 is set and in this
time frame, the adversary cannot issue a CORRUPT query without eventually losing.

We have
Pr
[
bad

GC.2
1

]
≤ Pr

[
bad

GC.2∗
1

]
+ AdvIND-CCA

TOAEP+(AIND-CCA).

Integrity of plaintexts. Starting from GC.2∗ , we can bound the probability of abort due to bad1 using the
integrity of plaintexts of HtE-SE. Using an adversary A against the Multi-Stage-security of MTP-KE2st
in GC.2∗ , we build an adversary AINT-PTXT = (A1,A2) that plays in the INT-PTXT game (Fig. 39) with
HtE-SE, SKDF and SAMP[·, ·, g, p].

93



A1(n) starts simulating the game GC.2∗ for A. During stage 1, it makes stest set the nonce n it was given
as input instead of generating its own. If A makes a SEND(stest.label, (n, n∗s , ...)) query for some n∗s , A1
responds as in GC.2∗ , saves the state of the simulation as st and returns n∗s . Since stest does not have a
contributive partner who shares n∗s with them, it must have been produced by a session controlled by A.

A2(st) continues the simulation forA. On receiving SEND(stest.label, (n, n∗s , ..., c1)),A2 calls its own oracle
via DEC(c1) to obtain m1. If m1 ̸= ⊥, A2 is aborted by its own game, immediately winning since it has
not made any ENC queries. Note that the DEC oracle will never return m1 = ⊥, as in that case it aborts
the adversary who loses the game at that point.

The oracles of the INT-PTXT game use an encryption key derived from a fresh value independent of the
stage 1 key nn, matching the behaviour of GC.2∗ . In any case, A cannot learn the real nn and notice the
discrepancy before stage 2 ends since a) issuing a REVEAL query for stage 1 would invalidate it from
testing stage 2 due to key dependence, and b) CORRUPT queries are only permitted once the protocol
accepts stage 2, but the abort condition that we are analysing must happen before such acceptance as
it is a result of a DEC query by AINT-PTXT. Further, though the real nn would also be used later in the
protocol to compute h, the execution never reaches that point. Thus, whenever A sets the bad1 flag and
thus triggers an abort, AINT-PTXT wins in its own game. We have

Pr
[
bad

GC.2∗
1

]
≤ AdvINT-PTXT

HtE-SE,SKDF,SAMP,g,p(AINT-PTXT),

hence we can write

Adv
GC.1
MTP-KE2st

(A) ≤ 2 ·AdvIND-CCA
TOAEP+(AIND-CCA)+ 2 ·AdvINT-PTXT

HtE-SE,SKDF,SAMP,g,p(AINT-PTXT)+Adv
GC.2
MTP-KE2st

(A)

GC.2. Notice that in GC.2, A cannot win anymore: either the game aborts, or stest outputs m1 = ⊥ and
rejected2. In either case, A cannot issue its TEST query anymore, so we have

Adv
GC.2
MTP-KE2st

(A) = 0.

Case D: Contributive partner of tested session exists.

GD.0. This game is equivalent to G2 where A tests stage 2 and stest does have a contributive partner.

GD.0 → GD.1. Similarly to GB.1, take the game GD.1, which is equivalent to GD.0 except that at the
beginning, the game guesses which of the npk potential responders will stest choose as intended partner,
as well as which of the nS sessions will be partnered with stest after stage 1 and aborts when the guess is
wrong.

We have
Adv

GD.0
MTP-KE2st

(A) ≤ npk · nS · Adv
GD.1
MTP-KE2st

(A).

Let pk, n, ns be the values included in stest.cid.1 resp. s′test.cid.1. In this game, stest and s′test may be either an
initiator and a responder or vice versa. In the pair (stest, s′test), denote the initiator by sI and the responder
by sR.

Next, we consider the possibility that the protocol will involve a number of “retries”. A retry happens
when the computed auth key identifier aid is not unique among the identifiers of other accepted sessions
of sR.uid and both sI, sR revert to a previous state, forcing sI to sample a new b←$ {0, 1}2048. The sessions
keep track of the number of retries in the field rid, which is part of m2, and reject if rid ≥ ridmax, the
maximum number of retries allowed in the protocol. Since the aid value is only 64 bits, we cannot exclude
the possibility of collisions, especially as the number of completed sessions grows. Further, it is possible
that the adversary may be able to manipulate the hash h that is used by the responder to indicate a retry
due to collisions in the 64-bit “auth key aux hash” value ax, which is the only input used to compute h

94



1 : initiator sI(knows pk) responder sR(has (pk, sk),Said)

2 : a←$ {0, 1}2048

3 : a←$ {0, ... , q− 1} // GD.3

4 : m1 ← n, ns , g, p, ga mod p, ...

5 : M←M∪
{

m1
}

// GD.2

6 : kse ← SKDF.Ev(nn , ns)

7 : kse ← SKDF.Ev(nn , ns)
n, ns , c1 c1 ←$ HtE-SE.Enc(kse , m1)

8 : m1 ← HtE-SE.Dec(kse , c1)

9 : if m1 ̸= ⊥∧m1 /∈ M :

10 : bad2 ← true ; abort // GD.2

11 : if m1 = ⊥∨ n, ns /∈ m1 : reject

12 : rid← −1 rid← −1

13 : RC: rid← rid + 1 ; if rid ≥ ridmax : reject

14 : b←$ {0, 1}2048

15 : b←$ {0, ... , q− 1} // GD.3

16 : m2 ← n, ns , rid, gb mod p

17 : M←M∪
{

m2
}

// GD.2

18 : c2 ←$ HtE-SE.Enc(kse , m2)
n, ns , c2 RS: rid← rid + 1 ; if rid ≥ ridmax : reject

19 : m2 ← HtE-SE.Dec(kse , c2)

20 : if m2 ̸= ⊥∧m2 /∈ M∧ sR .uid /∈ Cpub :

21 : bad2 ← true ; abort // GD.2

22 : if m2 = ⊥∨ n, ns , rid /∈ m2 : reject

23 : if sI .stexec = accepted2 ∧ sI .cid.2 = sR .cid.2 :

24 : aid← SHA-1(akcurr )[96 : 160]

25 : if aid /∈ Said : h← hcurr1 ; accept akcurr

26 : else : h← hcurr2 ; retry from RS

27 : ak← (ga)b mod p ak← (gb)a mod p

28 : if rid = 0 : c←$ {0, ... , q− 1} else : c←$ {1, ... , q− 1}

29 : ak← (akcurr )c mod p ; akcurr ← ak // GD.5

30 : ax← SHA-1(ak)[0 : 64] ax← SHA-1(ak)[0 : 64]

31 : aid← SHA-1(ak)[96 : 160] aid← SHA-1(ak)[96 : 160]

32 : h1 ← NH.Ev(nn , ax, 1) hcurr1 ← NH.Ev(nn , ax, 1)

33 : h2 ← NH.Ev(nn , ax, 2) hcurr2 ← NH.Ev(nn , ax, 2)

34 : if aid /∈ Said :

35 : h← hcurr1 ; accept ak

36 : else :

37 : h← hcurr2 ; retry from RS

38 : n, ns , h

39 : if h = h1 : accept ak

40 : elseif h = h2 : retry from RC

41 : else : reject

42 : if sR .stexec = accepted2 ∧ sI .cid.2 = sR .cid.2 :

43 : aid← SHA-1(ak)[96 : 160]

44 : if h = hcurr1 : accept akcurr

45 : elseif h = hcurr2 : retry from RC

46 : else : reject

47 : if rid = 0 : c←$ {0, ... , q− 1} else : c←$ {1, ... , q− 1}

48 : ak← (akcurr )c mod p ; akcurr ← ak

49 : ax← SHA-1(ak)[0 : 64]

50 : aid← SHA-1(ak)[96 : 160]

51 : hcurr1 ← NH.Ev(nn , ax, 1)

52 : hcurr2 ← NH.Ev(nn , ax, 2)

53 : if h = hcurr1 : accept ak

54 : elseif h = hcurr2 : retry from RC

55 : else : reject // GD.5

Stage 2

sid.2 = (sid.1, ga mod p, gb mod p, h) ; sskey.2 = ak[0 : 1024]

Fig. 62. Protocol transitions for Case D starting from GD.2 (stage 2 only). Comments/strikethrough mark the first
game that adds/removes the given colour-coded “block” of pseudocode. To “accept ak” means to use it to set sskey.2;
akcurr is a global variable initialised as g.

95



1 : initiator sI(knows pk) responder sR(has (pk, sk),Said)

2 : . . . . . .

3 : rid← −1 rid← −1

4 : RC: rid← rid + 1 ; if rid ≥ ridmax : reject

5 : b←$ {0, ... , q− 1}

6 : if ∃s′ : s′ .uid /∈ Cpub ∧ gab = ga′b′ :

7 : bad3 ← true ; abort

8 : m2 ← n, ns , rid, gb mod p

9 : M←M∪
{

m2
}

10 : c2 ←$ HtE-SE.Enc(kse , m2)
n, ns , c2 RS: rid← rid + 1 ; if rid ≥ ridmax : reject

11 : if m2 ̸= ⊥∧m2 /∈ M∧ sR .uid /∈ Cpub :

12 : bad2 ← true ; abort

13 : if m2 = ⊥∨ n, ns , rid /∈ m2 : reject

14 : if sI .stexec = accepted2 ∧ sI .cid.2 = sR .cid.2 :

15 : aid← SHA-1(akcurr )[96 : 160]

16 : if aid /∈ Said : h← hcurr1 ; accept akcurr

17 : else : h← hcurr2 ; retry from RS

18 : else :

19 : if rid = 0 : c←$ {0, ... , q− 1} else : c←$ {1, ... , q− 1}

20 : ak← (akcurr )c mod p

21 : ak[1536 : 2048]←$ {0, 1}512 // GD.6

22 : akcurr ← ak // GD.5

23 : ax← SHA-1(ak)[0 : 64]

24 : aid← SHA-1(ak)[96 : 160]

25 : ax←$ {0, 1}64 ; aid←$ {0, 1}64 // GD.7

26 : hcurr1 ← NH.Ev(nn , ax, 1)

27 : hcurr2 ← NH.Ev(nn , ax, 2)

28 : if aid /∈ Said :

29 : h← hcurr1 ; accept ak

30 : else :

31 : h← hcurr2 ; retry from RS

32 : n, ns , h

33 : if sR .stexec = accepted2 ∧ sI .cid.2 = sR .cid.2 :

34 : aid← SHA-1(ak)[96 : 160]

35 : if h = hcurr1 : accept akcurr

36 : elseif h = hcurr2 : retry from RC

37 : else : reject

38 : else :

39 : if rid = 0 : c←$ {0, ... , q− 1} else : c←$ {1, ... , q− 1}

40 : ak← (akcurr )c mod p

41 : ak[1536 : 2048]←$ {0, 1}512 // GD.6

42 : akcurr ← ak

43 : ax← SHA-1(ak)[0 : 64]

44 : aid← SHA-1(ak)[96 : 160]

45 : ax←$ {0, 1}64 ; aid←$ {0, 1}64 // GD.7

46 : hcurr1 ← NH.Ev(nn , ax, 1)

47 : hcurr2 ← NH.Ev(nn , ax, 2)

48 : if h = hcurr1 : accept ak

49 : elseif h = hcurr2 : retry from RC

50 : else : reject // GD.5

Stage 2

sid.2 = (sid.1, ga mod p, gb mod p, h) ; sskey.2 = ak[0 : 1024]

Fig. 63. Protocol transitions for Case D starting from GD.5 (the last two queries of stage 2 only).

96



that depends on the agreed key ak. In the next part of the proof, we show that the protocol remains secure
despite this ability.42

Note that at this point, we are not assured that sI and sR will be partnered at the end of the execution,
only that at least one of them will accept and will be testable. Further, we attempt to capture all possible
flows with respect to retries in the protocol: the case of “accidental” retries caused by the honest parties,
the case where the adversary prevents honest retries, i.e. where A forges h signalling that aid is unique
when it is not, and the case where the adversary causes at least one additional retry, again by forging an
appropriate h.

GD.1 → GD.2. Consider the game GD.2, which is equivalent to GD.1 except that the game sets the flag
bad2 to true and aborts if sI receives m1 that was not produced by the session sR, or if sR receives m2
that was not produced by the session sI and sR.uid /∈ Cpub (see Fig. 62). Note that retries may cause sR
to process many m2, but at most ridmax such values. Conditioning on sR.uid remaining uncorrupted is
important because we are not assured that the sessions will be partnered, which means that corrupting
sR.uid may only mark one session’s stage 2 key as revealed: e.g. if A forged a hash h making sI accept
prematurely, only sR.sskey.2 would be marked as revealed and sI.sskey.2 would remain testable. We have

Pr[GD.1]− Pr[GD.2] ≤ Pr
[
bad

GD.2
2

]
.

To bound Pr
[
bad

GD.2
2

]
, we first use two additional game hops to intermediate games GD.2∗ and GD.2′ , that

handle other uses of nn in the protocol.

IND-CCA. The game GD.2∗ differs from GD.2 in that SEND(sI.label, (n, ns, ...)) (for some n, ns) sets a
random session key sI.sskey.1 ←$ {0, 1}256 instead of using nn. For consistency, the game also sets
sR.sskey.1← sI.sskey.1. The construction is the same as in Case B, in particular as in the transition between
the games GB.1 and GB.2. As in Case C, here the simulation is not perfect, but we only consider what
happens before the flag bad2 is set. We have

Pr
[
bad

GD.2
2

]
≤ Pr

[
bad

GD.2∗
2

]
+ AdvIND-CCA

TOAEP+(AIND-CCA).

Independence of SKDF and NH. The game GD.2′ generates an additional random value n′n ←$ {0, 1}256

at the end of stage 1, and uses this value instead of the original nn to compute h via NH. This step is
necessary to handle the key reuse present in the protocol in a more modular way, before reasoning about
the pseudorandomness of the keys derived using SKDF keyed by nn.

Using an adversary A playing in GD.2∗ resp. GD.2′ , we build an adversary DIND-KEY against the indis-
tinguishability of key reuse between SKDF and NH (Fig. 19). The adversary DIND-KEY = (D1,D2) can
be constructed in a straightforward way: D1 begins simulating the protocol for A according to GD.2∗

resp. GD.2′ and first captures ns from a SEND query input for the tested pair of sessions; D2(y) continues
without setting the stage 1 session key (which cannot be tested or revealed in this case), using y as the
key kse and computing the relevant h values using queries to its EVAL oracle. Since the “real” nn, now
computed by the IND-KEY game, is not used elsewhere in the protocol, the simulation is perfect. When
the challenge bit in DIND-KEY’s game is 1, A is playing in GD.2∗ , and when the challenge bit is 0, A is
playing in GD.2′ . Finally, the adversary D2 outputs the bit guess of A as its own. We have

Pr
[
bad

GD.2∗
2

]
≤ Pr

[
bad

GD.2′
2

]
+ AdvIND-KEY

SKDF,NH(DIND-KEY).

42 Note that though we cannot assume h to be unforgeable for the proof, this does not mean it is easy to forge in
practice.

97



Integrity of plaintexts. Starting from GD.2′ , we can bound the probability of abort due to bad2 using the
integrity of plaintexts of HtE-SE. Using an adversary A against the Multi-Stage-security of MTP-KE2st in
GD.2′ , we build an adversaryAINT-PTXT = (AINT-PTXT,1,AINT-PTXT,2) that plays in the INT-PTXT game
(Fig. 39) with HtE-SE, SKDF and SAMP[·, ·, g, p].

AINT-PTXT,1(n) starts simulating the game GD.2′ for A. During stage 1, it makes sI set n instead of
generating its own nonce, and once sR sets ns as its server nonce, it outputs its current state st and ns.

AINT-PTXT,2(st) continues the simulation. As in MTP-KE2st, it initialises a counter rid = 0 which will
count the number of protocol retries. At the end of stage 1, it also generates a fresh random value
n′n ←$ {0, 1}256, which will be used in case the simulated protocol requires honest values of h. The
following SEND queries are also modified:

– On SEND(sR.label, (n, ns, ..., c0)) for some c0, AINT-PTXT,2 decrypts c0 to m0 as in MTP-KE2st, sets a
random stage 1 session key as in GD.2∗ , and calls its own encryption oracle ENC(aux) with aux =
servertime to obtain a, m1, c1 instead of generating and encrypting the Diffie-Hellman share itself.
However, it does also compute kse ← SKDF.Ev(nn, ns) where nn is the value obtained from m0. It
returns (n, ns, c1), running2 to A.43

– On SEND(sI.label, (n, ns, c1)) for some c1, if sI.vid ∈ Cpub, then AINT-PTXT,2 uses the key kse derived
from nn that was encrypted in c0 to compute m1 ← HtE-SE.Dec(kse, c1), checks it and then (if not
rejecting) computes c2 ← HtE-SE.Enc(kse, m2) for m2 as in MTP-KE2st and returns (n, ns, c2), running2
to A.44

Otherwise, if sI.vid /∈ Cpub, AINT-PTXT,2 calls its own decryption oracle via DEC(c1), which returns
a message m1 or it aborts AINT-PTXT,2. If m1 ̸= ⊥ and n, ns are included in m1, AINT-PTXT,2 calls
ENC(aux) with aux = rid to obtain b, m2, c2 and returns (n, ns, c2), running2 to A. Note that the DEC
oracle will never return m1 = ⊥, since in that case AINT-PTXT,2 is aborted, having lost the game.

– On SEND(sR.label, (n, ns, c2)) for some c2, if sI.vid ∈ Cpub, thenAINT-PTXT,2 uses the key kse to compute
m2 ← HtE-SE.Dec(kse, c2) and then proceeds as in the original game, which includes calculating an
aid value and checking if it is unique, which can trigger a retry.

Otherwise, if sI.vid /∈ Cpub, AINT-PTXT,2 calls its own decryption oracle via DEC(c2), which returns a
message m2 or it aborts AINT-PTXT,2. If m2 ̸= ⊥ and n, ns are included in m2, AINT-PTXT,2 proceeds as
in the original game (incl. computing h using n′n). As above, the DEC oracle will never return m1 = ⊥.

– On SEND(sI.label, (n, ns, h)) for some h, AINT-PTXT,2 proceeds as in the original game depending on
the value of h. If a retry is signalled, it computes the next ciphertext c′2 ← HtE-SE.Enc(kse, m′2) for m′2
as in MTP-KE2st and returns (n, ns, c′2), running2 to A.

In the above, we assume thatAINT-PTXT follows the parsing behaviour of MTP-KE2st. Since role confusion
is excluded by the soundness predicate, we are assured that c1 and c2 could not be swapped. Further, not
calling the INT-PTXT oracles when sI.vid ∈ Cpub ensures that the simulation works in the cases where
A corrupts one of the parties before the other has finished running, since otherwise corruption of the
keypair (pk, sk) would not give A the power to decrypt or produce HtE-SE ciphertexts.

The remainder of the analysis follows the same argument as in the transition between the games GC.1
and GC.2 of Case C. Thus, wheneverA sets the bad2 flag and thus triggers an abort in the simulated game,
AINT-PTXT wins in its own game. Note that the maximum number of retries ridmax is implicitly included
in AdvINT-PTXT as it upper-bounds the number of ENC and DEC queries.

We have
Pr
[
bad

GD.2′
2

]
≤ AdvINT-PTXT

HtE-SE,SKDF,SAMP,g,p(AINT-PTXT).

43 To be more precise, since this query causes stages to change, AINT-PTXT,2 first pauses the execution at the end of
stage 1, returns control to A and only resumes executing SEND when called by A to continue.

44 This is to ensure that certain corruption queries still enable the adversary to use the value nn retrieved from c0 to
compute keys and essentially produce forgeries.

98



Hence, overall we get

Adv
GD.1
MTP-KE2st

(A) ≤ 2 · AdvINT-PTXT
HtE-SE,SKDF,SAMP,g,p(AINT-PTXT) + 2 · AdvIND-KEY

SKDF,NH(DIND-KEY)

+ 2 · AdvIND-CCA
TOAEP+(AIND-CCA) + Adv

GD.2
MTP-KE2st

(A).

Note that counterintuitively, after this transition we cannot say yet that the sessions sI, sR agree on the
values ga mod p, gb mod p. It is possible that by manipulating the hashes that serve as retry indicators
the adversary can cause the two sessions to derive different stage 2 keys, or cause one of the sessions to
reject. However, given that we are in a responder-only authentication setting, we only consider a pair of
sessions that includes an honest initiator. For such a pair, the adversary cannot manipulate the values
themselves.

GD.2 → GD.3. The game GD.3 samples the Diffie-Hellman shares from {0, ... , q− 1} instead of {0, 1}2048

as in GD.2. Using an adversary A against the Multi-Stage-security of MTP-KE2st, we build an ad-
versary DBIAS that distinguishes between the distributions D0 = {(g, gx) | x ←$ {0, ..., q− 1}} and
D1 = {(g, gy) | y←$ {0, 1}2048}, simulating GD.2 or GD.3 depending on the challenge bit in its game and
replacing the one instruction differing between GD.2 and GD.3 with the output of its challenge oracle. We
have

Adv
GD.2
MTP-KE2st

(A) ≤ Adv
GD.3
MTP-KE2st

(A) + 2 · AdvBIASG,q (DBIAS).

We can reduce the problem of distinguishing between the biased distributions as defined above to the
problem of distinguishing short exponents from full exponents (Definition 1). We focus on the case
n = 2048, and let c be such that log(n) < c < n. Let D2 = {(g, gz) | z ← 22048−c · u, u ←$ {0, 1}c}.
Using an adversary DBIAS that distinguishes between D0 and D1, we construct an adversary DS-EXP that
distinguishes between D0 and D2. DS-EXP, given (g, W), computes

W′ ← g2c·r ·Wv,

where r ←$ {0, 1}2048−c and v ← (22048−c)−1 mod q. It gives (g, W′) to DBIAS and outputs whatever
DBIAS returns. If W is from D0, we have W′ = g2c·r · gv·x. Since v is a constant and x is sampled uniformly
at random from {0, ... , q− 1}, the distribution over (g, W′) is the same as D0. If W is from D2, we have
W′ = g2c·r · gv·z = g2c·r · g(22048−c)−1·22048−c·u = g2c·r+u. Since r is (2048− c) and u is c bits, the distribution
over (g, W′) is the same as D1. We have

AdvBIASG,q (DBIAS) ≤ AdvS-EXP
G,q (DS-EXP).

GD.3 → GD.4. The game GD.4 differs from GD.3 in that at the end of the game, it additionally sets the
flag bad3 and aborts if sI accepted a key ak derived using a value gb or ga such that another session had
also accepted a key derived using the same gb or ga, as shown in Fig. 64. We have

Pr[GD.3]− Pr[GD.4] ≤ Pr
[
bad

GD.4
3

]
≤ 4nS

q
,

and hence
Adv

GD.3
MTP-KE2st

(A) ≤ 8nS
q

+ Adv
GD.4
MTP-KE2st

(A).

This ensures that sessions other than sI, sR cannot derive the same session key as sI.45

GD.4 → GD.5. The game GD.5 differs from GD.4 in that the game replaces the last computed ak value (and
therefore the stage 2 session key) for the sessions sI, sR by a value of the form gc mod p for a random

45 This is sufficient in the setting of responder-only authentication as sR’s key can only be tested if sR has an honest
contributive partner (though it can still be revealed).

99



GD.3–GD.4

1 : LK,Kpub ← Init(Urole)
2 : LS ← [] ; Cpub ← ∅

3 : btest ←$ {0, 1}
4 : lost← false

5 : sI, sR ←$ guess tested session pair

6 : b′test ← ANEWSESSION,...,TEST(Kpub) // TEST aborts if the tested session is not sI or sR

7 : if ∃s, s′ ∈ LS, n ∈ {0, 1}128, nn ∈ {0, 1}256 : (s ̸= s′

8 : ∧ s.uid.role = s′.uid.role = I∧ s.sskey.1 = s′.sskey.1 = nn

9 : ∧ s.sid.1 = (_, n, _, _) ∧ s′.sid.1 = (_, n, _, _)) :

10 : bad0 ← true

11 : return 0

12 : (. . . , ga, gb, _)← sI.sid.2 // skip if the session rejects

13 : if ∃s ∈ LS :

14 : (s ̸= sI ∧ s.uid.role = I ∧ (s.sid.2 = (. . . , _, gb, _) ∨ s.sid.2 = (. . . , _, ga, _)))

15 : ∨ (s.uid.role = R∧ s.sid.2 ̸= sI.sid.2∧ (s.sid.2 = (. . . , ga, _, _) ∨ s.sid.2 = (. . . , gb, _, _))) :

16 : bad3 ← true

17 : return 0 // GD.4

18 : if ¬Fresh :

19 : lost← true

20 : return b′test = btest ∧ lost = false

Fig. 64. Games GD.3–GD.4 for the proof of Multi-Stage-security of MTP-KE2st.

c←$ {0, ... , q− 1}. Note that the adversary may cause either session to complete its execution first, and
by definition at most one of the sessions sI, sR can reject. Recall that the sessions are contributive partners
in the last message exchange of stage 2 if and only if the sessions agree on the values of ga, gb mod p.

Let akcurr ← g be a global variable that will represent the shared key (before it is accepted, it may be
updated several times). We will use hcurr1 , hcurr2 in a similar way, though they will only be first set during
the execution of the protocol. The game behaves as follows (as depicted in Fig. 62):

– On SEND(sR.label, (n, ns, c2)) for n, ns in s.cid.2, the game decrypts c2 as in the original protocol to
recover the value gb mod p (and rejects if it cannot recover one). Then:

• If sI has already accepted at that point and the sessions sI, sR are contributive partners:

The game uses akcurr, the auth key used by sI, to check whether aid = SHA-1(akcurr)[96 : 160] is
unique with respect to sR.uid’s Said. If it is, it accepts sR.sskey.2← sI.sskey.2 = akcurr[0 : 1024] and
outputs hcurr1 . If it is not, it goes into retry state and outputs hcurr2 .46

• Else: The game computes a new auth key ak← (akcurr)c mod p where c←$ {0, ... , q− 1}, updates
akcurr with this value, and uses it in the remaining protocol as before.

– On SEND(sI.label, (n, ns, h)) for n, ns in s.cid.2:

• If sR has already accepted at that point and the sessions sI, sR are contributive partners:

46 Note that in the latter case, the session sR will reject upon the next message it receives. This is because sI cannot
produce new messages, the adversary cannot forge such messages, and rid prevents out-of-order delivery or
replays of past messages.

100



The game uses the auth key akcurr computed by sR, and the corresponding values of hcurr1 and hcurr2
to proceed. If h = hcurr1 , sI accepts sI.sskey.2 ← sR.sskey.2; if h = hcurr2 , it goes intro retry mode;
otherwise it rejects.

• Else: The game computes a new auth key ak← (akcurr)c mod p where c←$ {0, ... , q− 1}, updates
akcurr with this value, and uses it in the remaining protocol as before. Note that in this case, the
session will not make any checks with respect to the uniqueness of the aid value.47

Note that once sI uses a different value of gb mod p to set its cid than sR, the only way for the sessions to
become contributive partners again is if sR has not yet finished running and at some point receives c2
containing the relevant gb mod p (in the right order). Note that if the sessions end up accepting without
being partnered, only sI can be tested since stage 2 is responder-only authenticated and TEST requires the
tested session to have a contributive partner; when sI is tested, the adversary can learn sR’s session key
using a REVEAL query. Hence, if the sessions first agree on contributive identifiers and later diverge, the
game will replace both of their stage 2 session keys, but with different values gc, gc·c′ mod p for some c, c′.

Using an adversary A against the Multi-Stage-security of MTP-KE2st, we build an adversary DDDH
against the DDH assumption that simulates GD.4 or GD.5 depending on the challenge bit in its game.
DDDH is given the group parameters g ∈ Z∗p for prime p of the form p = 2q + 1 where q is prime48 and
g generates a cyclic subgroup of order q denoted by G, and the values X, Y, Z as input; its task is to
distinguish whether Z = gz or Z = gxy where X = gx, Y = gy for random x, y, z. It samples a random bit
btest ←$ {0, 1} at the start and precomputes the following values:

ak∗ ← Z
ax∗ ← SHA-1(ak∗)[0 : 64]

aid∗ ← SHA-1(ak∗)[96 : 160].

The adversary then modifies the simulated SEND oracle as follows:

– On SEND(sR.label, (n, ns, ..., c0)) for some c0, DDDH decrypts c0 to m0 as in MTP-KE2st, sets a random
stage 1 session key, and uses the given parameters g, p and the share X to construct m1 instead of gen-
erating its own ga. It then computes kse and encrypts m1 to c1 under kse. It returns (n, ns, c1), running2
to A.

– On SEND(sI.label, (n, ns, c1)) for some c1, DDDH computes kse and decrypts c1 to m1, making all the
necessary checks (in particular, it also checks whether m1 is the same message it constructed for
sR). It then uses the share Y to construct m2 instead of generating its own gb, and encrypts it as
c2 ← HtE-SE.Enc(kse, m2). It returns (n, ns, c2), running2 to A.

– On SEND(sR.label, (n, ns, c2)) for some c2, DDDH decrypts c2 to m2, making all the necessary checks
(it also checks whether m2 is the same message it constructed for sI). First, consider the case that
rid = 0. If aid∗ /∈ Said of sR, it computes h∗1 ← SHA-1(nn ∥ 01 ∥ ax∗)[32 : 160], accepts the key
sR.sskey.2 ← ak∗[0 : 1024]) and returns (n, ns, h∗1), accepted2 to A. Otherwise, it computes h∗2 ←
SHA-1(nn ∥ 02 ∥ ax∗)[32 : 160] and returns (n, ns, h∗2), running2 to A.

If it is the case that rid > 0, it follows the logic as for rid = 0 except using ak′ ← Zb′ instead of ak∗,
where b′ was generated by sI to produce m′2 (see below), to compute ax′, aid′, h′1 and h′2.

– On SEND(sI.label, (n, ns, h)) for some h, DDDH proceeds depending on the value of h. First, consider
the case before any retries. If rid = 0 and h = h∗1 , it accepts the key sI.sskey.2 ← ak∗[0 : 1024] and
returns accepted2 to A. If rid = 0 and h = h∗2 , it computes b′ ←$ {1, ... , q− 1} and constructs the next
ciphertext c′2 ← HtE-SE.Enc(kse, m′2) where m′2 uses Yb′ and returns (n, ns, c′2), running2 to A.

47 This represents no change from the original protocol, where a client session could potentially be fooled into
accepting a non-unique aid, losing synchronisation with the server.

48 Telegram uses a fixed prime p shown in https://core.telegram.org/mtproto/auth_key.

101

https://core.telegram.org/mtproto/auth_key


If it is the case that rid > 0, it follows the logic as for rid = 0 except using the previously generated
ak′ ← Zb′ instead of ak∗ to compute ax′, aid′, h′1 and h′2 that are used in the checks for h = h∗1 and
h = h∗2 . If it is the latter, it generates a fresh b′ value to proceed as above.

DDDH outputs its own guess as b′chall ← b′test = btest ∧ lost = false where b′test is the bit guess of A and
the lost flag is set under the same conditions as in both games GD.4, GD.5. Note that in the case of retries,
the session key will be of the form Zb′ for an honestly generated b′.

If the challenge bit bchall = 0 in the DDH game, then the tested session will accept the key derived from
Z = gxy just as in the game GD.4. Otherwise, if bchall = 1, then the tested session will accept the key derived
from Z = gz, capturing the behaviour of the game GD.5. We have Pr

[
b′chall = 1

∣∣ bchall = 1
]
= Pr[GD.4]

and Pr
[
b′chall = 1

∣∣ bchall = 0
]
= Pr[GD.5], hence

Adv
GD.4
MTP-KE2st

(A) ≤ Adv
GD.5
MTP-KE2st

(A) + 2 · AdvDDH
G,q (DDDH).

GD.5 → GD.6. The game GD.6 changes the following: whenever GD.5 sets a given ak as gc mod p, GD.6
replaces 512 of the least significant bits of ak with a uniformly random string, i.e. ak[1536 : 2048] ←$

{0, 1}512 (see Fig. 63).

Using an adversary A against the Multi-Stage-security of MTP-KE2st, we build an adversary DLSB that
distinguishes between the distributions D0 = {gc | gc ←$ G1536:2048} = {gc mod 2512 | gc ←$ G} and
D1 = {s | s ←$ {0, 1}512}, simulating GD.5 or GD.6 depending on the challenge bit in its game and
replacing the one instruction differing between GD.5 and GD.6 with the output of its challenge oracle. In a
straightforward manner, we get

Adv
GD.5
MTP-KE2st

(A) ≤ Adv
GD.6
MTP-KE2st

(A) + 2 · AdvLSBG,q (DLSB).

Further, applying the result of [FPSZ06, Theorem 7] with k = 512, n = 2048, ℓ = 2047 we can write

AdvLSBG,q (DLSB) ≤ SD(D0,D1) < 2−499,

where SD denotes the statistical distance.

GD.6 → GD.7. The next game, GD.7, replaces the SHA-1(ak) call used to compute the “auth key auxiliary
hash” ax and the “auth key id” aid with a random string as shown in Fig. 63.

Using an adversary A against the Multi-Stage-security of MTP-KE2st, we build an adversary DH that
plays in the TOTPRF game against H as shown in Fig. 38, where H is instantiated as H.Ev(hk, x) :=
SHA-1(x ∥ hk) = SHA-1(ak). DH thus simulates GD.6 or GD.7 depending on the challenge bit in its game,
and replaces the generation of ax and aid with the output of a call to its ROR oracle as

(axI, aidI)← ROR(akI[0 : 1536]),
(axR, aidR)← ROR(akR[0 : 1536]).

Both of these calls implicitly pick an unknown key hkI resp. hkR, however this does not break the sim-
ulation since this key replaces akI[1536 : 2048] resp. akR[1536 : 2048] which is never used elsewhere.
DH outputs its own guess as b′chall ← b′test = btest ∧ lost = false where btest was sampled by DH
at the beginning of the game, b′test is the bit guess of A and the lost flag is set under the same con-
ditions as in both games GD.6, GD.7. If bchall denotes the challenge bit in the TOTPRF game, we have
Pr
[
b′chall = 1

∣∣ bchall = 1
]
= Pr[GD.6] and Pr

[
b′chall = 1

∣∣ bchall = 0
]
= Pr[GD.7], hence

Adv
GD.6
MTP-KE2st

(A) ≤ Adv
GD.7
MTP-KE2st

(A) + 2 · AdvTOTPRF
SHA-1 (DH).

Finally, we can apply Proposition 1 to get

102



Adv
GD.6
MTP-KE2st

(A) ≤ Adv
GD.7
MTP-KE2st

(A) + 2 · AdvOTPRF
SHACAL-1(DOTPRF).

GD.7. The games GD.7 and GD.6 have together replaced both parts of the tested session key with random
values, so that the response of the TEST oracle is indistinguishable by definition. We have

Adv
GD.7
MTP-KE2st

(A) = 0.

H.2 Proof for the three-stage protocol

Here, we provide a proof for Theorem 2.

Proof. As in the two-stage proof, we proceed via a sequence of games. Since large parts of the proof of
Theorem 1 apply, we reference the relevant transitions without repeating the arguments here.

G0. The game G0 is equivalent to the game GMulti-Stage
MTP-KE3st,Urole,A, so we have

AdvMulti-Stage
MTP-KE3st,Urole(A) = AdvG0

MTP-KE3st
(A) = 2 · Pr[G0]− 1.

From now on, we omit displaying Urole in the advantage terms.

G0 → G1. The game G1 follows the changes made in G1 in the proof of Theorem 1.

To argue that in G1, the predicate Sound is always satisfied, we additionally need to show:

1. Partnered sessions must output the same session key.
This holds trivially since sskey.3 = sskey.2.

2. Mutual authentication.
Let s, s′ denote two partnered sessions. Since s.sid.3, s′.sid.3 include the session identifiers of previous
stages, they must match on the public key pk. They also include aid. Since MTP-KE3st.KGensym(W)
by definition outputs unique aid values with respect to a given user W and each such user can only
be associated with a single pk, we must have s.kid = s′.kid.

As before, we have

AdvG0
MTP-KE3st

(A) ≤
n2
S

2384 + Adv
G1
MTP-KE3st

(A).

G1 → G2. The game G2 additionally defines a setM, which it uses to keep track of messages produced
by honest initiators during the third stage of the protocol. Each entry is of the form ((W, aid), m′) where
W is the identity of the intended responder, aid is an identifier of the long-term symmetric key used in
that session, and min is the message generated by the initiator as part of the third stage. The game G2 sets
the flag bad1 and aborts whenever a responder session of a user W receives cbind which recovers aid∗ and
m∗in such that ((W, aid∗), m∗in) /∈ M. We have

Pr[G1]− Pr[G2] ≤ Pr
[
badG2

1

]
.

We will reduce this to a notion of plaintext unforgeability satisfied by CHv1. More formally, given an
adversary A playing in the game G2, we will construct an adversary AEUF-CMA against the EUF-CMA-
security of CHv1 (Definition 17). When A calls NEWSECRET, the adversary does not generate any akv1,
but it does generate the random identifiers aid in the same way that MTP-KE3st.KGensym does.

The adversary modifies the simulated SEND oracle only during the third stage:

– On SEND(s.label, continue) for an uncorrupted initiator session s, it proceeds as in the original proto-
col, but instead of encrypting min itself, AEUF-CMA calls the oracle: cin ←$ EVAL((W, aid), (mid, min)).

103



– On SEND(s.label, cbind) for an uncorrupted responder session s, it decrypts the first layer (the MTProto
2.0 channel) as in the original protocol.AEUF-CMA reconstructs the message min ← (nb, aidt, aid, sidt, exp)
where nb, aid, exp come from mbind and aidt, sidt come from the MTProto 2.0 channel state. Then, it
uses its VFY oracle: b← VFY((W, aid), (mid, min), cin) where W is the session’s owner and mid likewise
comes from the MTProto 2.0 channel state. AEUF-CMA then accepts if and only if b = 1.

Whenever A causes bad1 to be set due to some (W, aid), min) /∈ M, when AEUF-CMA submits this to VFY,
it wins in the EUF-CMA game. We have

Pr
[
badG2

1

]
≤ AdvEUF-CMA

CHv1 (AEUF-CMA),

and hence
Adv

G1
MTP-KE2st

(A) ≤ 2 · AdvEUF-CMA
CHv1 (AEUF-CMA) + AdvG2

MTP-KE2st
(A).

We now argue that in G2, the predicate Auth is always satisfied. A break of implicit authentication would
imply that a responder session accepted a message with an aid that was not found inM, while a break of
almost-full key confirmation for the server would imply that a responder session accepted a message
with a modified sidt or a replayed exp timestamp; both of these are now ruled out in G2.49

G2 → G3. The game G3 only allows the adversary to submit a single TEST query. This transition follows
the one made in G2 in the proof of Theorem 1, since the two stages are equivalent from the point of view
of TEST query simulation and the third stage in MTP-KE3st is not testable.

As before, we have
AdvG2

MTP-KE3st
(A) ≤ 2nS · Adv

G3
MTP-KE3st

(A).

From now on, the proof proceeds exactly as for MTP-KE2st. This is because the changes in stage 1 and
stage 2 of MTP-KE3st are superficial, and do not affect the security reductions: in stage 1 the message m0
has an extra field exp, and the stage 2 session key contains a subset of the bits used in MTP-KE2st. Finally,
the addition of stage 3 does not affect the reductions either, since the simulations never reach that point in
the execution. This appears as if it could arise in Case D, in the transition to GD.2, where we need to argue
about the independence of various uses of nn; stage 3 adds another such use, since nn[0 : 64] is used to set
the first server_salt for the MTProto 2.0 channel. However, the analysis only considers the execution up to
the event bad2 being set in GD.2′ resp. GD.2∗ , which occurs during stage 2. Viewed differently, the use of
nn[0 : 64] after stage 2 accepts does not create a difference since a REVEAL query could always be issued
for the stage 1 key at this point.

I The brittle monolith that is Telegram

In theory, the design of a cryptographic protocol has the sole purpose of achieving the protocol’s security
goals efficiently. In actuality, however, to achieve this goal it must also achieve the goal of allowing
at least a sufficiently motivated expert to convince themselves that the protocol achieves these goals.
In other words, the central insight of what is commonly referred to as “modern cryptography” is that
a cryptographic design is also tasked with being easy to reason about. A fundamental paradigm of
achieving this goal is modularity, where different components of the design can be reasoned about in
isolation and then (generically) composed to establish overall security guarantees. This modularity is
typically achieved by relying on building blocks that provide strong security guarantees on their own
(as opposed to only and potentially in specific compositions) and by breaking the dependency between
different components of a protocol by avoiding re-use of secret material.

Telegram’s failure to achieve this design goal is the root cause for the limitations and complexity of
our proofs and our seeming need to reach for unstudied assumptions on cryptographic building blocks

49 Note that the above reduction does not directly handle replays, as replayed messages would be in the setM.
However, replays are already prevented by the protocol itself in G2 as well as G1 by an explicit timestamp check.

104



than would otherwise be necessary. We will now discuss these issues and highlight several of the main
Telegram design choices and their effect on our proofs of security. We begin with mere complications,
then move on to limitations and seemingly necessary ad-hoc assumptions. We finish by briefly recapping
our hypothetical attack. We also discuss design choices that led to these issues and note that the same
design choice often lead to several different difficulties for arguing for the security of Telegram, leading
to necessary repetitions in what follows.

I.1 Proof complications

Several design choices made by Telegram introduced many otherwise avoidable complications in our
proofs.

Lack of a suitable key schedule. Recall that nn is passed into SKDF, into NH, and partially XORed with ns to
form server_salt.50 These three uses of nn are across three different SEND calls, rendering it impossible to
replace values one-by-one with random values and appealing to some PRF notion to justify the changes.
If instead nn had been used solely as an input to SKDF to produce pseudorandom values, with these
values replacing the three uses of nn, then a significantly simpler proof would have been obtainable.

Similarly, the two values ax and aid are both the result of a single SHA-1 call, which prevents the proof
from manipulating them independently.

Use of a (truncated) weak hash function. Although more efficient and secure alternatives such as SHA-256
and SHA3 exist, Telegram uses the now mostly deprecated SHA-1 algorithm. SHA-1 has been shown
not to be collision resistant via practical attacks [SBK+17, LP20]. The use of SHA-1 to compute the key
confirmation hash h complicates our proof. If a collision-resistant hash function had been used, we could
have relied on this property in the first step of the proof to establish public session matching.

Further, in the calls of SHA-1(ak) in Fig. 12, the output of the SHA-1 hash is truncated to only 64 bits. This
prevents us from using a simple PRF notion due to easy attacks even in the one-time PRF setting.

Short session identifiers. The 64-bit value output of the above-mentioned truncated hash function is aid.
This value is used by the Telegram servers to identify sessions. On the one hand, this imposes a hard
bound of 264 on the number of sessions each responder can accept. On the other hand, the shortness of
the value suggests that collisions between session state identifiers are likely, which complicates the proof.
A longer value, even of 128 bits, would have allowed for a simpler proof.

Lack of ciphertext integrity. Telegram’s MTProto relies on a custom mode of operation composing IGE-
mode and SHA-1. The composition achieves neither INT-CTXT nor IND-CCA [JO16]. Had an established
authenticated encryption scheme or an unforgable MAC been used, this would have simplified the proof
in allowing us to declare the Diffie-Hellman shares authenticated and using the ciphertext/mac tag
as part of our session identifiers. This in turn would have enabled public session matching based on
transcripts.

Reliance on plaintext checking. Our proof relies on the correctness of a complex parsing behaviour and the
checking of various plaintext headers and nonce values. That is, we also could not achieve modularity
separating cryptographic operations and higher-level protocol operations.

In particular, for the soundness of Theorems 1 and 2 we require that all message headers are different, so
there cannot be confusion about which state the protocol is in and role confusion is also ruled out. At
the lowest level, to prove a property used by our integrity proof for CHv1 (Proposition 7), we rely on the
fact that SEv1 in Fig. 8 checks fixed parts of the plaintext. We also rely on this checking behaviour in the
integrity proof itself (Proposition 8) in the transition between G4 and G5, where it allows us to rewrite the
game with a different order of operations.

50 We also note that nn is misnamed as a nonce, since it is used as a key.

105



I.2 Limitations of our proof

As discussed in Section 4.5, the main limitation of our proof is that we do not model the actual connection
between the initial run of MTP-KE3st and subsequent runs of MTP-KE2st. Moreover, our model does not
allow for generic composition of our theorems about MTP-KE3st and existing results about the channel
MTP-CH. This is due to several design choices made by Telegram that prevent simple composition of the
security proofs.

Key dependence. While being composed of multiple stages, MTP-KE3st does not derive the keys in the
different stages independently. This prevents us from using general composition results on key exchanges
and secure channels (in the style of e.g. [Gün18]) to argue about the security of MTP-KE3st when used in
conjunction with MTP-CH (as analysed in [AMPS22]).

Another example is the fact that the DH value in MTP-KE2st is used to internally derive ax and aid, and
is used afterwards in MTP-KE3st as an encryption key ak. Instead, if the DH value had been used as
an input to a KDF to derive ax, aid and ak as (computationally) independent keys, a composition result
would be more feasible to achieve.

Public key reuse. We do not model the fact that the public key pk of the server is used in both MTP-KE2st
and MTP-KE3st. To model this, a proof would have to consistently update it across two different games
simultaneously. Using different independent keys would have allowed us to treat the two protocols
separately without essentially assuming the co-dependence away.

Lack of key confirmation. We were unable to prove key confirmation for MTP-KE2st and only proved key
confirmation for the server in MTP-KE3st. Key confirmation would have been possible if h was produced
using a secure MAC.

Direct use of non-uniform key material. As described in Section 4.3, MTProto uses bits of the agreed DH
values directly as key material instead of using them as an input to a key derivation function. However,
the existing proof for MTProto [AMPS22] assumes a uniform key distribution. This prevents us from
composing our results with those of [AMPS22]. Moreover, this forces us to use a session key distribution
for stage 2 which is not the uniform distribution on strings of a given size (see Section 4.3).

Retry handling. In general, it is difficult to reason about the security of a protocol without knowing the
total number of exchanged messages. For example, the security bound for INT-PTXT depends on the
number of encryption and decryption queries, which in turn depends on the number of retries. Two
aspects of the protocol design prevent us from making an argument that the number of retries would be
bounded in practice. First, there is a question of preventing adversarially-triggered retries: this would
necessitate showing that NH outputs are unforgeable, which is not possible due to its short input length.
Second, even if the adversary was not able to directly manipulate the flow of the protocol, it remains in
control of creating new sessions, which in turn influences the size of each server’s Said that determines
the likelihood of an honest retry. Thus, we were forced to assume a maximum retry number ridmax.

I.3 Reliance on unstudied assumptions

In Appendix C we describe several unstudied ad-hoc and new assumptions that we used in our proofs.
These assumptions could have been avoided if collision-resistant hash functions (e.g. SHA-256 or SHA3)
had been used instead of SHA-1 and if proper key derivation functions had been used.

We can view these assumptions as part of two groups, based on their plausibility and impliciations if they
were invalidated. The first two (4PRF, 3TPRF) are lower-level, expressing a pseudorandomness property
of SHACAL-1: they appear plausible due to the large key length of SHACAL-1, but symmetric cryptanalysis
would be needed to determine the concrete reduction in advantage compared to the known results on
SHACAL-1 without leakage. The remaining three (SPR,UPCR, IND-KEY) are higher-level, expressing

106



properties of SHA-1 that are variants of standard assumptions or more novel: however, it appears that
breaking either of these would not be sufficient to break the key exchange protocol; there exist versions of
these assumptions which if broken would be sufficient to break the protocol, but they place even stricter
constraints on the adversary.

I.4 A hypothetical attack

Weak channel binding. In Section 4.5, we describe an attack on client authentication that is based on the
way that a new temporary key is bound to the long-term authentication key ak. The attack exploits the
fact that the Telegram server used to not verify the expiration time sent in the binding message. Although
Telegram has addressed this specific issue by enforcing the check, the design choice to rely on such checks
for session binding is brittle, and its security depends on nuanced details related to the way session
key management and expiration are implemented. Instead, more robust cryptographic approaches can
be used to bind between the sessions that generate the new temporary key and ak. For example, one
approach is to calculate a MAC over the transcript of the current session’s handshake using a key derived
from ak as the MAC key.

107


	Analysis of the Telegram Key Exchange
	Introduction
	Preliminaries
	Notation
	Standard definitions

	Model
	Parameters and syntax
	Adversarial queries
	Security game

	Telegram protocols
	Overview
	Custom primitives
	Parameters
	Protocol definitions
	Differences and the scope of the model

	Theorem statements
	Detailed protocol figures
	Model details
	Further differences
	Modelling choices

	New security assumptions
	4PRF: SHACAL-1 as a "four-way" PRF with leakage
	3TPRF: SHACAL-1 as a "three-time" PRF with leakage
	SPR: Sampler-based second-preimage resistance of SHA-1
	UPCR: Unpredictable-prefix collision resistance of SHA-1
	IND-KEY: Indistinguishability of key reuse between SKDF and NH

	Analysis of Telegram-OAEP+ public-key encryption scheme
	Birthday bound
	Standard definitions
	Shoup's public-key encryption scheme OAEP+
	Public-key encryption scheme Telegram-OAEP+

	TOTPRF: One-time pseudorandomness of truncated SHA-1
	INT-PTXT: Integrity of plaintexts of HtE-SE with respect to SKDF
	Definition of INT-PTXT
	SKDF is an OTPRF
	UPREF: Prefix unpredictability of SKDF
	USUFF: Suffix unpredictability of SKDF
	Proof for INT-PTXT of HtE-SE and SKDF

	EUF-CMA: Existential unforgeability of MTProto 1.0 encryption
	Definition of EUF-CMA
	KDFv1 is a PRF
	UNPRED: Unpredictability of SEv1 on random keys
	Proof for EUF-CMA of CHv1

	Main proofs
	Proof for the two-stage protocol
	Proof for the three-stage protocol

	The brittle monolith that is Telegram
	Proof complications
	Limitations of our proof
	Reliance on unstudied assumptions
	A hypothetical attack



