
Impossibility Results for Post-Compromise Security

in Real-World Communication Systems

Cas Cremers
CISPA Helmholtz Center for

Information Security
cremers@cispa.de

Niklas Medinger
CISPA Helmholtz Center for

Information Security,
Saarland University

niklas.medinger@cispa.de

Aurora Naska
CISPA Helmholtz Center for

Information Security,
Saarland University

aurora.naska@cispa.de

November 25, 2024 – Version 1.0.1∗

Abstract

Modern secure communication systems, such as iMessage, WhatsApp, and Signal include
intricate mechanisms that aim to achieve very strong security properties. These mechanisms
typically involve continuously merging in new fresh secrets into the keying material, which is
used to encrypt messages during communications. In the literature, these mechanisms have
been proven to achieve forms of Post-Compromise Security (PCS): the ability to provide
communication security even if the full state of a party was compromised some time in the
past. However, recent work has shown these proofs do not transfer to the end-user level,
possibly because of usability concerns. This has raised the question of whether end-users can
actually obtain PCS or not, and under which conditions.

Here we show and formally prove that communication systems that need to be resilient
against certain types of state loss (which can occur in practice) fundamentally cannot achieve
full PCS for end-users. Whereas previous work showed that the Signal messenger did not
achieve this with its current session-management layer, we isolate the exact conditions
that cause this failure, and why this cannot be simply solved in communication systems by
implementing a different session-management layer or an entirely different protocol. Moreover,
we clarify the trade-off of the maximum number of sessions between two users (40 in Signal)
in terms of failure-resilience versus security.

Our results have direct consequences for the design of future secure communication
systems, and could motivate either the simplification of redundant mechanisms, or the
improvement of session-management designs to provide better security trade-offs with respect
to state loss/failure tolerance.

∗We provide a list of main changes in Appendix A.

1

mailto:cremers@cispa.de
mailto:niklas.medinger@cispa.de
mailto:aurora.naska@cispa.de

1 Introduction

Modern communication systems include intricate mechanisms that aim to achieve very strong
security properties. One of these properties is Post-Compromise Security (PCS) [16]: even after
the entire state of a device is compromised at some point by an adversary, future communications
can still obtain meaningful security properties (esp. against active adversaries). The high-level
intuition is that this can be achieved by continuously merging fresh secrets into the keys used for
message encryption, in such a way that if the adversary is passive for a short time, it becomes
locked out of the communications again, effectively healing the communication.

Many globally used communication systems, like Apple iMessage, WhatsApp [43], Signal
messenger [37], Google Messages [24], and Element [39] use intricate mechanisms to implement
such a continuous merging in of fresh secrets. The canonical mechanism to implement this was
introduced by Signal and is called the Double Ratchet [31,35] (and notably its sub-component
the asymmetric ratchet). In the literature, the Double Ratchet and related PCS mechanisms
have been studied extensively, e.g., [3, 9, 11,12,15,17,18,25,26,29,35,38]. The majority of these
works prove that for some protocol, if a healing step occurs after a compromise – a key refresh
where the adversary is temporarily passive – then security is recovered, thus satisfying PCS.

However, recent work [20] showed that this PCS guarantee does not necessarily lift to the
application level. For example, for the Signal messenger, the underlying Double Ratchet can be
proven to provide PCS. However, end users do not obtain a similar PCS guarantee, because there
is a mismatch between the single stream of messages that users see, and the underlying set of up
to 40 Double-Ratchet sessions that underlies this stream. In reality, the Signal messenger allows
any adversary that has the long-term secrets of A to start a new Double Ratchet session with
B, even if A and B previously healed all their ongoing sessions. From a user’s perspective, this
means that their single stream of messages can never heal, and they thus do not obtain PCS.
This user-level PCS guarantee was coined conversation-based PCS in [20], which we refer to as
conversation PCS . The PCS failure is not caused by a bug in Signal, but is a design choice by
its designers: for a number of reasons, an end user might lose (parts of) their latest local state:
to enable such a user to still communicate with its partners, the Signal messenger allows creating
a new Double Ratchet session. As a side-effect, an adversary may also exploit this possibility to
start a new session without knowing the latest local state, thereby undoing any positive effects
from healing.

This has led to the following open question: can real-world communication systems actually
achieve full conversation PCS or is this fundamentally impossible, and under which conditions?

In this work we solve this question and show that communication systems that need to be
resilient against certain types of state loss, fundamentally cannot achieve full conversation PCS.
Our results imply that real-world messengers like Signal and others, which are deployed on
hardware platforms where memory might be slightly unreliable (e.g., bit flips) or operating-system
level backups might be used, cannot hope to achieve the full PCS guarantees.

However, this does not mean that we cannot do better in practice. Already in [20] it was shown
that the Signal messenger could obtain better guarantees after compromise by slightly modifying
its session-management layer, which determines when and how different (possibly concurrent)
Double Ratchet sessions are initiated between two parties A and B. In this work, we go beyond this
protocol-specific result, and explore several parts of the design space for generic communicating
systems that aim for PCS-like guarantees. Notably, we show which session-management policies
do not help towards better PCS guarantees, and which session handling policy offers stronger
PCS guarantees than currently deployed protocols. Moreover, we demystify the effects of the
maximum number of concurrent sessions in such protocols, enabling protocol designers to make
more informed choices.

2

Contributions. Our main contributions are:

1. We show, and formally prove, that full PCS for an end-user is fundamentally unachievable
in communication systems that need to be resilient against certain forms of state loss, which
includes all real-world messaging apps.

2. We explore the design space of these communication systems, and show how real-world
requirements lead to violation of conversation PCS for both deployed and proposed solutions.

3. We generalize and extend previous Signal-specific findings to arbitrary communication
systems, and show how to instantiate a session-management layer with a stronger PCS
guarantee than what is currently achieved in deployed systems. We clarify the impact of the
choice of the parameter that controls the maximum number of concurrent sessions between
two users.

We prove our formal statements using the Tamarin prover: Our formal models and results are
available for reproducibility, and extensions in [21].

Outline. We provide background on the PCS property and communication systems in Sec-
tion 2. We explore the design space, define the problem and provide intuition on our statements
in Section 3. Then, in Section 4 we present our formal models and analysis on the impossibility
results. In Section 5, we describe our proposed solution and its formal analysis. Lastly, we discuss
interesting insights and future work in Section 6, and we end with our conclusions in Section 7.

2 Background

2.1 Post-Compromise Security (PCS)

Post-Compromise Security (PCS) is a guarantee that ensures the security of future communication
following the compromise of all secrets of a device. The messages exchanged between the honest
parties become confidential again, after the so-called ”healing”, a period during which the attacker
remains passive and does not interfere with the honest parties exchanging messages [16]. Typically,
the healing serves to refresh their secrets by incorporating untempered entropy, e.g., Diffie-Hellman
ephemeral secrets, and remove the attacker from the conversation.

PCS was initially defined in two versions: a) Weak-PCS, where the attacker has access to
the long-term secrets only during the compromise period, and b) Full-PCS, where the attacker
learns the long-term secrets of the victim. In later work [20], PCS was defined in the context of
secure messaging in terms of the level of security it achieves: a) session-level PCS, where messages
exchanged in a session are secure after the session secrets are compromised, and b) conversation-
level PCS, where the messages exchanged in any session of the conversation are secure, after a
single session is compromised. [13] defines PCS with a single-session specific metric to enable the
comparison of the achieved security on different protocols and adversaries. The property has seen
an extensive line of research, most prominently in secure messaging [3, 9, 11,12,15,17–19,25,26].

2.2 Communication Systems

In this section, we give an overview on deployed communication systems, the properties they aim
to provide, and how they manage concurrent sessions.

Underlying Protocols. The Signal protocol, composed by the X3DH protocol [31] and
the Double Ratchet [35], is one of the most widely deployed messaging protocols. It is used
by apps like the Signal messenger [37], WhatsApp [43], Google Messages [24], and many more.
The protocol is constructed such that after an authenticated key exchange to bootstrap the

3

communication, the users derive a shared symmetric key. From the shared key, they derive the
messaging keys using the Double Ratchet [35]. The main idea of the algorithm is to maintain a
chain of keys and update it by introducing new entropy–ephemeral Diffie-Hellman keys–every
time the users exchange messages going back and forth. The intricate mechanism aims to achieve
for the users forward secrecy and post-compromise security [3, 15].

Matrix [39] is another messaging protocol constructed by two algorithms: Olm and Megolm.
Olm [41] is constructed by the Triple Diffie-Hellman protocol [32] and the Double Ratchet [35]. Olm
is used to send relevant information for establishing a Megolm channel. Then, to actually encrypt
messages and move forward the state of the users the protocol uses the Megolm Ratchet [40].
Users maintain two uni-directional channels (effectively sessions), one for sending and one for
receiving. The protocol provides weak forward secrecy, and it aims to achieve some version of
PCS by rotating its sessions.

Other protocols include Apples’s iMessage PQ3 protocol, IETF’s Messaging Layer Security
(MLS) protocol [7], and Wire’s Proteus Protocol [44] which is an implementation of the Signal
protocol.

Properties. Some basic security guarantees of communication protocols include authenti-
cation, confidentiality, and integrity. Stronger guarantees talk about how the communication
protocols react in case of a compromise. Forward secrecy states that messages exchanged before
a compromise are secure. Post-compromise security states that messages exchanged after a
compromise are secure after healing. Other properties, related to how to protocol reacts in case
of lost or out-of-order messages are a) immediate decryption, messages are decrypted upon being
received and placed in their correct order in the conversation, and b) message-loss resilience,
future messages can still be decrypted even if some messages are lost by the network.

Managing Concurrent Sessions. As we will see in this work, communication systems
need to maintain a management layer that handles the concurrent underlying connections of the
protocols. Such concurrent connections are typically called sessions. The session-management
layer then is in charge of the creation, storage, update, and deletion of these session. The choice
on how to handle each one of these operations throughout the usage of the communication system
by the end-user, is defined by the system.

A prominent session-management layer is the Sesame algorithm [30], which is deployed for
the Signal app. In Sesame, each user maintains in their local database information about
their potential communication partner’s in the UserRecords and their linked devices in the
DeviceRecords . For each one of the device records, Sesame stores a list of sessions shared between
the local device and the partner’s device. In this list, there is one active session and the remainder
are marked as inactive sessions.

The main idea being that the two devices always communicate using the active session, and
when a message is received from an inactive one, the latter is promoted to being the current active.
This means that receiving out-of-order messages, makes the parties switch their communication
to encrypt using the old session from where the message originated. A formal analysis of the
management layer paired with the Signal protocol and experiments with the deployed system of
the Signal app showed that PCS is violated this setting [20]. A similar work [42] showed that
the session-management layers of Wire, called Proteus Dialogue (which resembles the Sesame
algorithm) also suffers from the same vulnerabilities discovered in Signal.

3 Resilient Communication Protocols

In this section, we explore the design space of systems that aim to prove PCS and the mapping
between usability constraints and their implication to security. We define a class of protocols,

4

Static States DA
0 ,0 DA

0 ,1 DA
0 ,2 Session

Conversation
State 1

Conversation
State 2

Conversation
State 3

Figure 1: Evolution of the conversation state of A in the ideal execution. End-user A
bootstraps the conversation using both parties’ static states to derive the dynamic state, DA

0 ,0 ,
and subsequently updates it on every message exchange as a long-running session. The ideal
environment ensures that both parties can derive and agree on the next dynamic states, DA

0 ,1 ,

DA
0 ,2 , and so on.

named resilient communication protocols, that abstractly models any two-party protocol that
interacts with an unreliable environment. Then, we recall different levels of PCS properties for
the end-users and the threat models against which they should hold.

We reason in this abstract class of protocols and draw our main conclusion: for any protocol
within this class, i.e. deployed and resilient against real-world failures, the highest level of PCS is
fundamentally unachievable. We provide an intuition, through informal arguments and examples,
on why these results hold, before setting out to formally prove them in Section 4. We also state
our second conclusion on a positive result: resilient messaging protocols can achieve a stronger
PCS guarantee for the end-user than what is currently achieved in practice.

3.1 Abstract Communication System

We consider two end-users, A and B, that wish to communicate with each other using a commu-
nication protocol that aims to provide PCS. Each end-user has a single device or client that they
use to communicate, which we refer to simply as A and B. In order to bootstrap the end-to-end
communication, each end-user needs a public identifier. Typically, this is implemented in practice
as a long-term private-public key pair, potentially with a certificate to validate the identity
depending on the system used. However, to be as general as possible, we do not assume any
specific implementation of the identity, but instead refer to the persistent identity as the end-user’s
static state. We assume that the static state is not updated, and we will later return to explaining
this choice and the implications of updating or rotating the static state in Section 3.3.

Using the static state, the two end-users authenticate one another and derive secrets to encrypt
messages end-to-end. For example, often these secrets are instantiated as symmetric keys, but it
could also be an agreement on ephemeral asymmetric keys. Modern communication protocols
wish to achieve strong security properties for their users, like post-compromise security, and
therefore do not encrypt all messages using the same initial secret. In particular, to achieve PCS,
the secrets need to evolve by incorporating new entropy, such that an attacker can be locked out
of the communication if it misses the updates. We define the dynamic state of A, respectively
of B, to contain all state that changes as messages are exchanged, and the secrets to encrypt
and decrypt messages between A and B. As the name suggests, the dynamic state is updated
with the progression of the communication. Lastly, A and B can evolve their dynamic states
asynchronously, and as messages are being exchanged, they should both be able agree on the
current dynamic state, e.g., A evolves their state to send, and B will evolve their state one they

5

Layer Concept Definition

Static State The fixed identity of the end-user and their device, typically in
the form of public-private key pairs.

Dynamic State The state of a session, that is updated through time or protocols
steps by adding new entropy, e.g., the Double Ratchet state.

Communication
Protocol

Conversation State The set of all dynamic states in memory at a particular timepoint.
Static State Loss The event of losing all the memory of an end-user, e.g., because

lost physical device.
Dynamic State Loss The event of losing or not having the correct dynamic state, e.g.,

because of hardware failures, and restored backups.
Dynamic State Compromise The event of an attacker compromising and learning the secrets of

a dynamic state.
Environment

Static State Compromise The event of an attacker compromising and learning the identity
of a user.

Policy Restrictions on how a communication system manages the multiple
dynamic states within a conversation, i.e., their creation, storage,
deletion and lifespan.

Dynamic State Loss Resilience The ability of the protocol to enable the end-users to recover after
losing the dynamic state, to synchronize their state and continue
the conversation.

Session-
Handling

Static State Loss Resilience The ability of the protocol to enable the end-users to recover after
losing their identity, to synchronize their state and continue the
conversation.

Table 1: Summary of concepts. We categorize the presented concepts according to the
communication architecture layer they belong, namely the communication protocol, the real-world
environment, and session management layer.

receive the message.
The linear view of the messages exchanged from one end-user to the other is defined as a

conversation. The conversation state contains at any time point the snapshot of the underlying
dynamic states in this linear view. A communication protocol might have to maintain several
concurrent dynamic states, as we will see later, but for now it only needs to contain a single one.

We use the term ideal execution to denote an execution of the communication system in the
absence of failures, i.e., users can update their state and maintain it synchronized with their
partner’s. We illustrate such as execution in Figure 1. Next, we provide examples from the
real-world on how to instantiate the dynamic and the static state.

Example 1: Static and Dynamic State. In WhatsApp [43], Google Messages [24], the Signal
app [37], the static state includes the user’s identity key pair, and the device’s identity key pair.
The dynamic state is the state of a session: the execution the X3DH [31] and the subsequent
update of the state using the Double Ratchet algorithm [37]. In messengers that adopt the Matrix
protocol [39], e.g., Element, the static state includes the device fingerprint and identity key pairs,
and the dynamic state is the execution of Olm [41] to establish a session and Megolm [40] to send
messages. In Apple’s iMessage, the static state includes the long-term user identity key pair, and
the dynamic state keeps track of the PQ3 protocol [29,38] to establish the session and exchange
messages.

We refer the reader to Table 1, for a summary of the concepts we presented and will further
introduce throughout this section. Now, we explore components that communication systems
consider to enable a seamless conversation, despite any desynchronization, or errors that may
happen during the communication.

6

3.2 Real-World Failure Modes

In the ideal execution, A and B start a conversation with a shared dynamic state and update
it in lockstep–they can always synchronize. However, during the lifespan of a conversation,
end-users can become desynchronized. In general, events that disturb or destroy state can be
very fine-grained (a single bitflip). To establish general results, we over-approximate all possible
types of state loss into two categories: loss of dynamic state and loss of static state. Loss of all
state is then modeled as a combination of the two.

Dynamic state loss is the event where an end-user loses all the values generated and stored
in a dynamic state. The end-user can lose part of the state, but we model the worst case scenario:
all stored secrets are no longer accessible in the local memory. Dynamic state loss can happen
due to normal operations or can be induced by errors at the hardware layer. We provide below
two examples.

Example 2: Restore Backup. The end-user restores in their device an old backup, which
overwrites the current dynamic state with the dynamic state of the backup. From the device’s
perspective, a dynamic state loss event took place, and they jumped back to a state in the past.

Example 3: Hardware Failure. The memory hardware can suffer from failures, e.g., a
bit/multi-bit error, or losing part of the state [28]. In the worst case, an unrecoverable error
renders the entire dynamic state unusable. This is manifested in the communication system as
inability to encrypt and decrypt messages, amounting to dynamic state loss.

Static state loss is the event where an end-user loses their static state and all the dynamic
state related to it. The identity can be lost, because they reinstalled the communication system’s
client, or due to an error in the physical device.

Example 4: Lost device. The end-user loses their device, and along with it the static state of
the system. In this case, the end-user suffered from a static state loss and to recover they need to
reinstall the client in a new device.

3.3 Functional Requirements

Now, that in the real-world environment it is possible for the end-users to lose their dynamic and
static state, they can become desynchronized. Lets assume A loses their state. A and B can no
longer communicate with one another since: a) the dynamic state’s secrets are lost for A and
they cannot encrypt, b) messages sent by B cannot be decrypted, and c) the app maintains a
single dynamic state per conversation, therefore no resynchronization is possible.

Were an app to implement the described protocol, the end-user would be locked out of the
conversation anytime there is a desynchronization. The app is rendered unusable even during
expected operations such as dynamic state loss. The same arguments can be applied for static
state loss.

A protocol deployed in the real-world should be resilient against events such as dynamic and
static loss. We define this class of protocols as resilient communication protocols, which enable
the participants to continue sending and receiving messages after every state loss event. We
define the following two properties for the resilient messaging protocol:

Definition 1. Dynamic State Loss Resilience: After every dynamic state loss, a honest end-user
is able to continue the communication, i.e., to send and receive messages.

Definition 2. Static State Loss Resilience: After every static state loss, a honest end-user is
able to continue the communication, i.e., to send and receive messages.

Dynamic State Loss Resilience. Once an end-user loses their dynamic state, the only way
to re-synchronize with their partner is to go back to a common point where they both agree on,

7

Static States

DA
0 ,0 DA

0 ,1 DA
0 ,1

DA
1 ,0

Session 0

Session 1

Conversation
State 1

Conversation
State 2

Conversation
State 3

Figure 2: Evolution of the conversation state of A in the real-world environment.
End-user A starts a new dynamic state DA

1 ,0 and progresses in the resilient communication
protocol after the parties are desynchronized and no longer agree on the current dynamic state
DA

0 ,1 .

i.e., the static state. User’s know each other’s static state, and from that point they can negotiate
new secrets and continue the conversation. In practice, this amounts to A and B executing a
new key exchange to authenticate their identities and compute a new shared dynamic state. To
achieve this, the conversation allows for multiple dynamic states as shown in Figure 2. In a
conversation, A and B have one or multiple running different dynamic states at the same time,
and overall multiple during the lifetime of that conversation.

Static State Loss Resilience. After losing the static state, the end-user needs to recover
their identity, and re-authenticate, or log-in into their account. The identity could be stored in a
local backup or using a third-party, which the user has access to, or using a recovery mechanism.
Re-authentication, typically requires an out-of-band channel, for example verifying one’s email
address or phone number.

Rotating the static state. The static state could be “restored” by rotating the identity,
effectively generating new secrets such as long-term identity keys. Notice that in this case, the
end-user would depend on another secret or state to authorize the update of the identity, such
as an user secret or account password. Since the static state is no longer static, it would be
considered part of the dynamic state, and this new secret becomes the static state of the end-user.
As a result, all of our statements over the static and dynamic states would simply shift to talk
about different instantiations. I.e., the problem of losing and recovering state would manifest
itself at another layer of the secrets. Therefore, we fix the static state to be the unique identity of
the end-user, which is recoverable using a backup or a recovery mechanism, but otherwise it is
not changed.

3.4 Security Requirements

Now, we define the threat model of the communication system and the different post-compromise
security properties.

Threat Model. In our work, we consider an attacker that can compromise dynamically any
end-user at any time. We define two types of compromise:

1. Dynamic State Compromise: The attacker compromises a dynamic state, and learns all the
stored secrets.

2. Static State Compromise: The attacker compromises the static state, and learns all the
stored identity secrets.

8

When the attacker compromises both the static and dynamic state, we refer to it as a full
compromise. Additionally, we consider the attacker to be active and interfere in the protocol, e.g.,
by injecting their own messages in the protocol. For completeness, we will also briefly mention
the passive attacker, which does not interact with the system, instead it records and tries to
decrypt the traffic later (harvest-now-decrypt-later threat model).

PCS Properties. From the threat models and the level in which the property should hold,
we can categorize four PCS properties for the messaging system.

Initially, we define the PCS from the secure messaging space. Messengers, being an instantiation
of a communication system described so far, claim to achieve PCS against a passive eavesdropper.

Definition 3. Session PCS - Passive Attacker : Security of the session is restored after healing,
even when a passive attacker compromises the dynamic state.

Next, we define PCS studied in the literature, which holds over a single session, and the
attacker compromises all user secrets.

Definition 4. Session PCS - Full Compromise: Security of the session is restored after healing,
even when an active attacker compromises the static and dynamic state.

Considering that the conversation of two end-users can have multiple dynamic states, [20]
defines the conversation-level PCS property against a dynamic state compromise.

Definition 5. Conversation PCS - Dynamic State Compromise: Security of the conversation is
restored after healing, even when an active attacker compromises the dynamic state.

Lastly, we define the conversation level property against the stronger threat model from the
literature, where both the dynamic and static state are compromised, i.e., full PCS achieved at
the end-user level. The property guarantees that the healing event can lock the attacker out of
the entire conversation of the end-user.

Definition 6. Conversation PCS - Full Compromise: Security of the conversation is restored
after healing, even when an active attacker compromises the static and dynamic state, i.e., all the
secrets of a conversation.

3.5 Overview of Main Results and Consequences

We explored the design space of an abstract communication system: the real-world failures and
the functionalities that the app needs to account for, as well as varying levels of PCS guarantees
and threat models. Now, we will provide intuition for our two main results, which we will prove
in Section 4 and Section 5.2, respectively.

Our first main result captures a trade-off between resilience and security requirements:

A resilient communication protocol cannot achieve conversation PCS against a full compromise
(Definition 6).

The underlying intuition is that a resilient protocol tolerates dynamic state loss by allowing
users to continue the protocol purely based on their static state. Since this is exactly the state
compromised in the full PCS threat model, the latter can continue communicating by creating a
new dynamic state with the partner. Similarly, the protocol tolerates static state loss by allowing
the user to recover the same static state, making the problem persist across static state recovery.
If a protocol has no truly static state, for example because it also rotates long-term keys, it

9

cannot be resilient because after losing dynamic state, it has no shared state to bootstrap from,
as discussed previously in Section 3.3.

Our second main result is a positive result:

A resilient communication protocol can achieve conversation PCS against a dynamic state
compromise (Definition 5).

The intuition is that the resilient protocol allows the users to create new dynamic states
(because it tolerates dynamic state loss). Dynamic states can be managed such that state updates
ensure that previous dynamic states are deprecated. This way, the protocol can clean the system
from a compromised state, and with it remove the attacker. Thus, if healing occurs after a
compromise, the attacker cannot rejoin the protocol, because it does not know the static state
nor the current dynamic state.

Relating our Results to Existing PCS Solutions At first glance, our results seem to
contradict known results from the literature. The difference is that existing work on PCS considers
only the single session setting, and at the same time does not considering resilient communications:
when two parties desynchronize, there is no mechanism or security guarantee for any later
communications. Indeed, existing solutions do not provide PCS after desynchronization [3, 11, 15,
23, 26, 29, 38]: their results only hold for single sessions that do not desynchronize and do not
carry over to the real-world multi-session deployments.

The authors of [22] propose an authenticated continuous key agreement (ACKA) protocol
that can detect and prevent attacks from an active MitM. By treating the Signal protocol as
a continuous key agreement, they can provide an add-on to achieve the strong property in the
protocol. However, when the protocol is deployed, e.g., in the Signal app, at the user-level there
is no longer a single long-lived running session. In reality, parties are allowed to start multiple
sessions, and as a result the active MitM attacker is not detected or prevented at the user-level,
because of the following behavior: the attacker compromises the identity key, the honest parties
heal in a session, the attacker starts a parallel session with the partner.

Our general observations also have implications for group-key based protocols such as IETF’s
Messaging Layer Security (MLS) protocol [7], where desynchronized users can rejoin the group.
The rejoining requires the static state of the user. The full PCS property would suffer the obvious
attack of the adversary rejoining instead of the compromised party, and since the latter can suffer
from dynamic state loss, they cannot tell if they have been impersonated.

In a similar way, work on group messaging [2, 4–6, 10, 14, 36] also considers single session
guarantees. The initial work on interoperability of secure messaging in [27] also does not consider
PCS for the end user, but rather for a single session.

Matrix does not achieve full PCS [1], and their recommendation on how to enable it is to
“periodically start a new session” [40] with a ”maximum number of at least 4 sessions per device” [39].
Unfortunately, their recommendation leads to worse PCS guarantees, because it introduces more
opportunities for the adversary to violate PCS. Essentially, the apps from Example 1, including
Matrix, allow the following behavior: the static state of A is compromised, A heals, the attacker
starts a new session using the compromised state and injects new messages. In particular for the
Signal app, this was experimentally shown previously in [20].

4 Impossibility Results

In this section, we develop our formal model of a communication protocol that aims to achieve PCS
with the goal to prove our impossibility result. We do not reason about a specific instantiation (or

10

implementation) of such a protocol, but create an abstract model that allows us to reason about
any instantiation that fits into the design space we explored in Section 3. We show step by step
the construction of the resilient communication protocol model, and then prove the impossibility
result.

First, we explain our methodology in 4.1, and then introduce the tool used for the analysis,
the Tamarin Prover [33] in 4.2. We develop our formal models in 4.3, while highlighting some of
the design choices. Finally, we present the results of our analysis in 4.4. We publish our models
and results to enable reproducibility, and extensions in [21].

4.1 Methodology

Our methodology is to incrementally develop abstract formal models that cover the failure modes,
and show, step by step, the consequences of enabling different behaviors leading to the loss of
PCS.

We start with a Base model of the communication system defined in Section 3.1. This model
captures the bare-bones functionalities that are necessarily present in any communication system
that aims to provide PCS guarantees. To begin with, we only consider ideal executions of the
protocol. Building on top of this model, we add the real-world modes of failures, namely a)
dynamic state loss, and b) static state loss. In the resulting two non-resilient models, Non-
ResilientDynamic and Non-ResilientStatic, we prove that indeed communication is stopped after these
events: the user is locked out of the protocol.

Motivated by our observation in Section 3.3, that a real-world protocols needs to offer its
users a way to recover from state loss, we create the ResilientDynamic and ResilientStatic models. In
ResilientDynamic, we enable multiple dynamic states, which allows the users to continue communi-
cation from another dynamic state, and in ResilientStatic, we enable multiple dynamic states and a
static recovery mechanism allowing the users to recover from both failures. For both models, we
show that they overcome the usability issues of their predecessor model, and formally prove that
they are indeed resilient against the respective failures. However, this resilience comes at a cost:
both models no longer provide PCS (Definition 6), which we showcase via attack traces found in
each of the models.

Finally, we use the ResilientStatic model, the most expressive model, to show through attack
traces, that different classes of policies that manage the multiple dynamic states fail to recover
conversation PCS. We are systematic enough to cover different classes of policies:

1. No policy: The attacker can compromise old sessions to inject messages [20], and start
new sessions.

2. Sequential sessions: To mitigate the first attack, creating new session now deprecates
the previous session making sessions sequential. Deprecated sessions are still kept around
to receive messages.

3. Token-passing between sessions: Following the logic of how PCS can be achieved in [16],
the active session now passes a token to the next active session when it gets deprecated.
This is done to create a chain of sessions, where missed updates remove the attacker from
the chain. However, this policy introduces a new point-of-failure: If the active session
containing the token is lost, the user is locked out of any further communication. As a
result, the protocol is no longer resilient against dynamic state loss.

4. Third-party providing token: To improve on the shortcomings of storing the token
locally, the protocol can store it with a trusted third-party which does not lose state; making
this class of protocols resilient against state loss. During protocol execution, the end-users
can query the trusted third-party with information stored in their static state to retrieve
the token when necessary.

11

4.2 The Tamarin Prover

The Tamarin Prover is an open-source symbolic analysis tool for the analysis and verification of
large scale cryptographic protocols [33]. However, in this work, we use it as a tool to analyze
a generic unbounded concurrent system. For instance, we do not make use of its equational
theories to model cryptographic primitives, or its inbuilt Dolev-Yao adversary. We provide below
a high-level overview of the tool and some of the key concepts on how to model systems and
properties.

A user provides the tool with a model of their system, a property they want to verify, and the
threat model against which the property should hold. The input of the tool is modelled using a
Tamarin specific language based on multiset rewriting. In particular, the state of the system
is recorded in so-called facts, e.g., Fr(idA) denotes a special fact, the so-called fresh fact, that
guarantess that idA is a unique, freshly generated value. To specify how the system can transition
from one state to another, the user defines rules. A rule is constructed by a left-hand side (L)–the
preconditions to execute the transition, a right-hand side (R)–the updated system after taking
the transition, and the observable logged action (A). Rules can also be used to create threat
model by, e.g., modeling the compromise of a party, or the attacker executing a protocol step.
We provide below an example of a rule that creates a user device. After taking this transition,
a new fact !UserDevice(idA) is added to the system whose freshly generated identifier is logged
in the action !CreateDevice(idA). The ! here denotes a persistent fact, i.e., a fact that is never
removed from the system even when present on the left-hand side of a rule.

[Fr(idA)] −[CreateDevice(idA)]→ [!UserDevice(idA)]

To express properties in Tamarin, the user specifies trace properties using a guarded first-
order logic fragment over the observable logged actions, variables, and timepoint variables, which
are prefixed with a ♯ From the previous example, the observable action is CreateDevice (idA),
logging the creation of the device with identifier idA. A simple property over this action could
state that there exists a trace in the system where two different devices are created.

∃ idA idB ♯i ♯j . not(idA = idB) ∧
CreateDevice(idA)@♯i ∧ CreateDevice(idB)@♯j

To prove a property, Tamarin negates it and tries to turn the counterexample into a valid
trace of the protocol by reasoning backwards using the user-defined protocol rules, as well as some
inbuilt ones. If this backwards reasoning fails in all cases, Tamarin concludes that there exists no
counterexample, and the property is proven. If a counterexample can be constructed, Tamarin
will output an attack trace. Due to the undecidability of the problem, running out-of-memory
(or time) is unavoidable and always possible. However, in this case, Tamarin offers a graphical
user-interface where the user can inspect partial proofs and manually guide the tool. Additionally,
users can create custom heuristics for better proof search, and state intermediate lemmas, often
called invariants, which Tamarin can use to prove more complex statements.

4.3 Modeling the Communication System

In this section, we describe our incremental Tamarin models of a communication protocol that
aims to achieve PCS. We start out with the Base model and then explain how each subsequent
model builds on the its predecessors. Finally, we model different policies for dynamic state
handling in the resilient communication protocol model.

12

Base Model

The Base model captures the abstract communication system; two end-users can bootstrap a
conversation and update their dynamic state as described in Section 3.1. The model is minimal
in the sense that it does not allow for more than a single dynamic state between two users and
every execution of the protocol is ideal, i.e., there is no dynamic or static state loss.

Setup We model an unbounded number of end-users that communicate with one another in
pairs of two. Each of these end-users possesses a single device. Once the parties bootstrap their
communication, they can exchange an unbounded number of messages going back and forth.

Bootstrapping the Protocol To model the end-users and their static state, we use the
persistent fact !UserDevice(id), which carries a unique identifier id . When two devices start the
communication, they create from both parties’ static state their respective dynamic state. We
show below a simplified rule modelling the creation of a dynamic state.

[!UserDevice(idA), !UserDevice(idB),
Fr(s),Fr(sid)]

−[CreateDynamicState(sid , idA, idB , s)]→
[DynamicStateA(sid , idA, idB , s),

DynamicStateB(sid , idA, idB , s), . . .]

Here, DynamicStateA(sid , idA, idB , s) models DA
0,0. We use the identifier sid to refer to the

chain of dynamic states which starts with this one, and the value s to model the secret that is
continuously updated as the state evolves. The action CreateDynamicState logs the creation of
the dynamic state.

Restricting to Single Session To allow only a single session of dynamic states between a pair
of users, we make use of Tamarin’s restriction feature, and introduce the following restriction:

∀ sid sid ′ idA idA s s ′ ♯i ♯j .

CreateDynamicState(sid , idA, idB , s)@♯i

∧ CreateDynamicState(sid ′, idA, idB , s
′)@♯j

⇒ ♯i = ♯j

This restriction states that if there is a pair of CreateDynamicState actions that agree on the
users idA and idB , they are the same one, i.e., only a single dynamic state can be created for an
end-user pair.

Progressing in the Protocol Now that the parties have established their conversation, they
can act as Sender and Receiver in an update of their respective dynamic state. We illustrate the
rule of A progressing as a sender. The rule for B is analogous:

[DynamicStateA(sid , idA, idB , s),Fr(s
′)]

−[HonestStep(sid , idA, idB , s),
HonestSendStep(sid , idA, idB , s), . . .]→

[DynamicStateA(sid , idA, idB , ⟨s, s ′⟩),
!UpdateDynStateB(sid , idA, idB , s, ⟨s, s ′⟩)]

13

This rule models A sending a message to B. Notice that we are not using Tamarin’s inbuilt
network, but use the fact !UpdateDynStateB to model a message that B can receive. In this rule,
A samples new entropy, Fr (s ′) and updates their dynamic state to include it. We use the action
HonestStep to log the fact that an honest user, in this case A, executed a dynamic state update,
and the action HonestSendStep to more precisely record that the update was caused by sending a
message.

Threat Model The attacker can compromise both the dynamic state and the static state of
the end-users at any point in time. We model the attacker’s knowledge after the compromise in
fact, a) !CompromisedDevice(id) models the attacker compromising and leaning the static state of
device id , and b) CompromisedDynStateB(sid , idA, idB , s) models the compromise of the dynamic
state.

Then, to model the attacker’s capabilities, we create attacker controlled rules. Below, we
showcase the attacker’s variant of the rule for being able to receive, decrypt and learn the secret
of a dynamic state:

[CompromisedDynStateB(sid , idA, idB , s),
!UpdateDynStateB(sid , idA, idB , s, ⟨s, s ′⟩)]

−[AttackerKnows(⟨s, s ′⟩)]→
[CompromisedDynStateB(sid , idA, idB , ⟨s, s ′⟩)]

We use the action AttackerKnows to record that the attacker knows a particular secret. Later
on, we will use this to formally state our PCS properties within Tamarin.

Modelling State Loss

Now, we model the real-world failure on the communication protocol described in Section 3.1.
From the Base model, we add dynamic and static state loss, resulting in two new models,
Non-ResilientDynamic and Non-ResilientStatic respectively.

To model dynamic state loss, we add a rule that consumes an existing DynamicState fact,
which can then no longer be used to progress in the protocol. We show the dynamic state loss of
A, analogous rule for B, in the following:

[DynamicStateA(sid , idA, idB , s)]

−[DynamicStateLossA(. . .)]→
[]

We model the static state loss using similar rules. Additionally, this also implies that any
previous dynamic states are also unusable. To model the latter, we add restriction that enforces
that after a static state loss no more progress from any dynamic states of this static state is
allowed.

∀ sid idA idB s ♯i ♯j .

StaticStateLoss(idA)@♯i

∧ HonestStep(sid , idA, idB , s)@♯j

∧ ♯i < ♯j ⇒ ⊥

Recovering From State Loss

To adapt to non-ideal executions of the protocol, we add mechanisms to recover from dynamic state
loss and static state loss to the previous model, and create the ResilientDynamic and ResilientStatic
models.

14

In the ResilientDynamic model, we recover from dynamic state loss by removing the restriction
that limits dynamic state creation per user pair. This allows now for an unbounded number of
session within a conversation. With more than one session between users, communication can
now continue in case of a dynamic state loss by simply creating a new dynamic state for further
communication.

In the ResilientStatic model, we recover from static state loss by adding a new rule that abstractly
models an event of recovering the same static state from a trusted-third party or backup. The
rule raises the StaticStateRecovery(id) action. Then, we modify the state loss restriction to allow
the parties progressing in the protocol, strictly if they have recovered from the loss:

∀ sid idA idB s ♯i ♯j . ♯i < ♯j ∧
StaticStateLoss(idA)@♯i

∧ HonestStep(sid , idA, idB , s)@♯j

⇒ (∃ ♯k .StaticStateRecovery(idA)@♯k

∧ ♯i < ♯k ∧ ♯k < ♯j)

Policies

We will now describe how we model the family of policies we have identified in Section 4.1.

No Policy In the absence of any policy, our ResilientStatic suffices since it does not put any
restrictions on the dynamic state management.

Sequential Sessions The sequential sessions policy enforces that only the latest session can
encrypt and send new messages, while older sessions are only allowed to receive messages which
might still be in-flight. To implement the first part of the policy, we add the following restriction
to our ResilientStatic model:

∀ sid sid ′ idA idB s s ′ s ′′ ♯i ♯j ♯k .

CreateDynamicState(sid , idA, idB , s)@♯i

∧ CreateDynamicState(sid ′, idA, idB , s
′)@♯j

∧ HonestSendStep(sid , idA, idB , s
′′)@♯k

∧ ♯i < ♯j ∧ ♯j < ♯k ⇒ ⊥.

Formally, the restriction enforces that only the latest dynamic state can execute HonestSendStep
actions, i.e., send updates to the peer. The resulting model, we call the Sequential model.

To model that older session can still receive in-flight messages, we copy the rules for receiving
messages of the honest parties, and add actions that distinguish them from the original rules. Then,
we add a restriction that prevents older sessions from using the original receive rules–allowing
them to only receive in-flight messages.

Token-Passing Between Sessions This policy builds on the sequential sessions policy and
additionally introduces a secret token which is passed from the currently active session to the next
one to achieve PCS at the conversation-level. Consequently, there exists only a single dynamic
state per user that can create new dynamic states because it alone posses the token. As we
have already shown in our Non-ResilientStatic model, this design fails to achieve resilience against
dynamic state loss: It is impossible to recover from the loss of this special dynamic state; no
other state can create new ones.

15

Third-party Providing Token This policy builds on the last policy by outsourcing the storage
of the token to a trusted third-party, which does not lose state. The benefit of this is that the
protocol again becomes resistant against dynamic state loss because the affected party can query
the third-party with their static state to create a new dynamic state.

To model this policy, we add a unique fact, TTP(t , t ′), for each pair of end-users to our model,
which acts as a storage for the current token t and next token t ′. Additionally, the dynamic
state is initialized with the current token. Whenever, a new dynamic state is created, the trusted
third-party provides the next token only when the current token matches the current dynamic
state’s token. To recover from dynamic state loss, we also allow creating a dynamic state from
the static state and a token provided by the trusted third-party. We call the resulting model
TokenPassing, and refer to our models [21] for more details.

4.4 Formal Analysis Results

In this section, we summarize the results of our formal analysis with Tamarin.

1) Non-Resilience We first show two systems that achieve PCS, but are not resilient against
state loss, i.e., the loss of dynamic and static state. In the Non-ResilientDynamic model, we show
the following property for end-user A:

∀ sid1 uidA idA uidB idB rk1 rk2 ♯i .

DynamicStateLossA(sid1 , uidA, idA, uidB , idB , rk1)@♯i

⇒ not (∃ sid2 rk2 ♯j . ♯i < ♯j ∧
HonestStepA(sid2 , uidA, idA, uidB , rk2) @♯j)

Formally, the property encodes that after the DynamicStateLossA(sid1 , uidA, idA, uidB , idB , rk1)
action, the user cannot do a communication step HonestStepA(sid2 , uidA, idA, uidB , rk2). This
holds across any session that they share with the user uidB . The intuition behind is straightforward:
Losing the single dynamic state shared between uidA and uidB without a recovery mechanism
locks the user out of any further communication.

In the Non-ResilientStatic model we show that a after static state loss the user can no longer
participate in the protocol. In Tamarin, the property is the same to the previous property
but it reasons about the StaticStateLoss fact instead. Since static state is lost, so are all the
conversation’s concurrent dynamic states, leaving the user locked out of the conversation.

2) Resilience In the ResilientDynamic model, we establish that the users can recover from dynamic
state loss and continue communicating with their partner. This is captured by the following
property in Tamarin:

∃ sid1 sid2 uidA idA uidB idB rk1 rk2 ♯i ♯j .♯i < ♯j ∧
DynamicStateLossA(sid1 , uidA, idA, uidB , idB , rk1)@♯i

∧ HonestStepA(sid2 , uidA, idA, uidB , idb, rk2) @♯j

The property states that it is possible for end-user A to continue executing HonestStepA at time-
point ♯j , potentially in a different session, after they previously suffered from a DynamicStateLossA
at timepoint ♯i (♯i < ♯j) event. Intuitively, this is now possible because the model is no longer
restricted to a single session between end-user pairs, i.e., A and B can create a new dynamic state
and continue in a different session of the conversation.

16

Analogously, we establish in the ResilientStatic model that the static state loss recovery mecha-
nism is also effective. We prove the existence of a trace characterized by the following statement:

∃ sid uidA idA uidB idB rk .♯i < ♯j∧
StaticStateLoss(uidA, idA)@♯i ∧
HonestStepA(sid , uidA, idA, uidB , rk) @♯j

Again, the property is analogous to the one for dynamic state loss. Proving this property, we show
that a party that suffered a static state loss can continue participating in the protocol afterwards.
This property is now achieved for the following technical reasons: Recall from Section 4 that
we add a rule raising the StaticStateRecovery action to the ResilientStatic model, and changed the
existing restriction modeling static state loss to be ineffective if the event is raised for a party. As
a consequence, static state recovery is now possible.

3) Impossibility Results Now, we formally establish our impossibility result:

In our model, a resilient communication protocol cannot achieve conversation PCS against a
full compromise attacker (Definition 6)

Definition 6. Conversation PCS - Full The property states that after the healing of A
in session sid1 , if there is a protocol step such as send or receive in any session, and the attacker
knows this secret, the only way this is possible is if they compromised the victim again after
healing, or they additionally compromised the partner.

∀ sid1 sid2 uidA idA uidB idB rk ♯i1 ♯i2 ♯i3 . ♯i1 < ♯i2 ∧
// After a party heals session sid1 ,

HealingA(sid1 , uidA, idA, uidB , idB , . . .)@♯i1 ∧
// and receives/sends in any session with secret rk,

HonestStep(sid2 , uidA, idA, uidB , idB , rk)@♯i2 ∧
// if attacker knows this secret rk,

AttackerKnows(rk)@♯i3 ∧
⇒ // is because the attacker either:

// compromised the state again after healing,

(∃ ♯j . ♯i1 < ♯j ∧
CompromiseA(uidA, idA, uidB , idB , . . .) @♯j))

∥(∃ ♯j .♯i1 < ♯j ∧ CompromiseDevice(uidA, idA,) @♯j))

// or compromised the state of the partner.

∥(∃ ♯j .CompromiseB(uidA, idA, uidB , idB , . . .) @♯j))

∥(∃ ♯j .CompromiseDevice(uidB , idB , . . .) @♯j))

To prove our impossibility result, we find counterexamples to Definition 6 in the ResilientStatic,
the Sequential, and the TokenPassing model. The impossibility results correspond to the informal
intuition built in Section 3, independently of how the sessions are managed, they are generated
by the static state, which is compromised by the attacker.

Analysis Times For all of our models, we specify 14 intermediate helper lemmas to aid
Tamarin in the verification. These lemmas help Tamarin during its proof search by identifying
invariants of the system, e.g., the ordering of specific actions, and allow Tamarin to discard
some traces earlier.

17

Model
PCS Run Helper

(Definition 6) Time Lemmas
No Policy

(Non-ResilientStatic)
✗ 330s 14

Sequential ✗ 1h 14
TokenPassing ✗ 6s* 14

Table 2: Summary of Tamarin Impossiblity Results.
Our proofs are obtained by using Tamarin’s Tactic feature to guide its proof search, as well as
some manual stored proofs (marked by *). The runtimes consist of automatic verification via

Tamarin’s CLI and automatic verification using its GUI. All models were run on a ThinkPad X1
Carbon Gen 9 with 32Gb of RAM.

With these lemmas, we are able to fully automatically verify the properties related to the
resilience of our non-resilient models and our resilient models in around 9 seconds per model
using Tamarin’s command-line interface.

To establish our impossibility result, we can find the counterexample in the ResilientStatic
model automatically with Tamarin’s CLI in around 360 seconds. Including the time it takes
Tamarin to verify our intermediate lemmas, the verification time for this model is roughly 390
seconds.

Finding the counterexample in both the Sequential model and the TokenPassing model required
more human interaction. For the former, we use Tamarin’s GUI and initially guide it by hand,
but have the tool then finish the proof automatically. For the latter, we resort to manually
specifying a trace that violates the PCS property and then constructing that trace manually in
the GUI. We provide all models and files containing both counterexamples in [21].

5 Improved Generalized Session-Handling

From our results in the previous section, we know that conversation PCS cannot be achieved if
the attacker compromises the static state (Definition 6). However, messengers can still achieve a
stronger PCS than what is being currently offered (from Definition 3 to Definition 5). We will
first describe the recommended solution of the improved session-handling layer. Then, we model
the policy in the resilient protocol model, and formally prove PCS, thus reducing the attack space
in case of a dynamic state compromise.

5.1 Proposal

We recommend a generalized policy for all resilient communication systems that aim to improve
their security guarantees post-compromise, based on policies from both the literature and deployed
in practice.

Basic Functionalities The basic functionalities of our solution are based on the Sesame
algorithm [30]. Each device locally keeps a list of the partners and their devices, as well as the
sessions that they create with each one of those devices.

Update Policy Following [20], we also recommend that sessions are created and used sequen-
tially when sending. This means that once a session is replaced, that old session must no longer

18

be used afterwards to encrypt new messages: it should only be used to receive messages, and
send their acknowledgements.

Number of Stored Sessions (N) Each device maintains N ≥ 2 sessions: the latest one to
send and receive messages, and the previous N− 1 sessions to strictly only receive older messages.
To optimize security and usability, we recommend N = 2. The previous session is needed in two
scenarios: a) the session was just updated and there can still be in-flight messages that arrive
later, and b) the devices started simultaneous sessions and they need one session to send and the
other to receive. In case of simultaneously started sessions, devices could perform an additional
check to abandon one of the two, when creation times are relatively close to one another, or can
agree to start a new one. We want to highlight that when an old message is received in one of
the previous N− 1 sessions, we recommend to send the acknowledgement of this message in the
old session it was received from; instead of the latest session. This ensures that Diffie-Hellman
shares are exchanged in the old session and it can heal to achieve PCS.

We expand in Section 6.1 on the impact of the parameter N on security versus resilience.

Update Policy - User Interface For user-facing communication systems, the user interface
should display received messages in an order that respects the order of the session it was sent
from. I.e., a message received from an older session should appear in the conversation, in the
correct place in the past where the session was active, and the message was decrypted. However,
this is not how apps currently handle these messages: instead, they will appear at the bottom
(latest part of the conversation) despite being sent from an older session. During normal usage of
the messaging app, this behavior occurs rarely, however, if an attacker actively injects messages in
the conversation, the end-user is currently not notified of it. To ensure that the end-user is aware
of this happening, we additionally recommend highlighting these messages in the user interface.

Session Deletion Since the update policy specifies to maintain sequential sessions, the sessions
list implements a First-In-First-Out order, i.e., older sessions are removed first. This was already
suggested in [30], but not yet implemented in practice in messengers such as Signal. The previous
N− 1 sessions can be removed after a predefined time T, and converge to keeping only the current
session. The choice of T specifies the time window during which apps still expect any in-flight
out-of-order messages, and do not want to re-encrypt them. Choosing a small time window will
result in the same issues discussed in Section 6.1.

Security Comparing our recommended solution to Sesame, we do not add any additional
overhead, while strictly offering a better security guarantee. Adding the update policy of [20],
enables a resilient communication protocol to achieve conversion PCS against dynamic state
compromise1, which is otherwise not achieved in a session management layer without any policies,
e.g., Sesame. Our recommendations remove the attack vector of compromising a session and
using it to inject new messages indefinitely.

However, an attacker that has compromised an old session, can still use them to inject legacy
messages, essentially messages that appear to have been sent from the past. The apps can restrict
the attack vector by reducing the number of sessions. From our recommendation to restrict the
number of stored sessions N = 2, we create a threshold on the time window in which an attacker
can misuse an old compromise, i.e., N session updates, renders previous sessions unusable in the
system. We show an attack trace in 5.2 to illustrate the subtle security differences from choosing N
in our formal analysis, and discuss the wider usability-security trade-off in Section 6.1. Essentially,

1This does not violate our impossibility result, which involved the compromise of the static state.

19

a lower N has better security (no previous messages are accepted, they need to be re-encrypted),
a higher N offers better resilience (reducing the need for re-encrypting past messages in case of
failures).

5.2 Formal Analysis

To formally verify our proposed solution, we develop and analyze a Tamarin model, which we
call the Proposal model. We build this model starting from the ResilientStatic model from Section 4.
We add the sequential session update policy, and a new restriction which models that only the
latest two sessions can receive legacy messages. This models our recommendation regarding the
number of stored sessions (N = 2) and update policy. The exact technical details of the Tamarin
model can be found in [21].

Definition 5. Conversation PCS We formally modelled conversation PCS against dynamic
state compromise in Tamarin with the following statement:

∀ sid1 sid2 uidA idA uidB idB rk ♯i1 ♯i2 ♯i3 . ♯i1 < ♯i2 ∧
// After a party heals session sid1 ,

HealingA(sid1 , uidA, idA, uidB , idB , . . .)@♯i1 ∧
// and receives/sends in any session with secret rk,

HonestStep(sid2 , uidA, idA, uidB , idB , rk)@♯i2 ∧
// if attacker knows this secret rk,

AttackerKnows(rk)@♯i3 ∧
⇒ // is because the attacker either:

// compromised the dynamic state again after healing,

(∃ ♯j . ♯i1 < ♯j ∧
CompromiseA(uidA, idA, uidB , idB , . . .) @♯j))

// compromised the static state,

∥(∃ ♯j . CompromiseDevice(uidA, idA,) @♯j))

// or compromised the state of the partner.

∥(∃ ♯j .CompromiseB(uidA, idA, uidB , idB , . . .) @♯j))

∥(∃ ♯j .CompromiseDevice(uidB , idB , . . .) @♯j))

For simplicity of presentation we have omitted some details, e.g., HealingA is a shorthand for
the role switching that is required to heal A. During role switching A introduces new entropy in
their dynamic state. The formal property specifies that after A has healed inside of a session,
the attacker can only learn the secret used in a HonestStep that occurred in any protocol session
after the heal, if they compromise the dynamic or static state of the victim again after the heal
(not protected by PCS), or they compromised the partner.

Proving Strategy. To prove the property, we used 14 intermediate lemmas, and Tamarin’s
tactics feature to prioritize state facts related to the respective user a lemma is concerned with.
When proving the PCS property, we prioritized the actions of the attacker, e.g., compromising
devices and dynamic states.

We prove the conversation PCS property automatically in Tamarin’s graphical user interface
(GUI) in around 1 hour of time on a ThinkPad X1 Carbon Gen 9 with 32Gb of RAM. Using
the GUI was necessary as we struggled with memory limitations using Tamarin’s command-line
interface. The GUI remedies this by allowing us to cut the proof into disjoint case-distinctions
which we can then prove separately; needing only a fraction of the memory.

20

Reduced Legacy Message Attack Vector. Finally, we also prove that the Proposal
model does not contain traces where an end-user receives legacy messages from older sessions
(N > 2). Formally, these traces are characterized by the following statement:

∃ sid1 sid2 sid3 uidA idA uidB idB ♯i ♯j ♯k ♯l ♯m .

♯i < ♯k ∧ ♯k < ♯l ∧
CreateDynState(sid1 , uidA, idA, uidB , idB , . . .)@♯i ∧
AttackerSendMsg(sid1 , uidA, idA, uidB , idB , . . .)@♯j ∧
CreateDynState(sid2 , uidA, idA, uidB , idB , . . .)@♯k ∧
CreateDynState(sid3 , uidA, idA, uidB , idB , . . .)@♯l ∧
ReceiveLegacyMsg(sid1 , uidA, idA, uidB , idb, . . . @♯m

The property encodes the existence of a particular attack, and states that is it possible that:
if there are two new sessions being created, sid2 at timepoint ♯k , and sid3 at timepoint ♯l , then
the user can still accept messages sent by an attacker from a previous session sid1 . For the model
with with our policy restrictions, Tamarin automatically disproves this property almost instantly
(5s), i.e., proving no such trace exists. In contrast, when removing the N = 2 policy restriction
from the model, we can prove the property true and display a corresponding attack trace in the
GUI in 5s. The absence of these traces in the Proposal model shows that our proposal reduces
the attack surface.

6 Discussion

6.1 The design space of the number of stored sessions: Demystifying
Signal’s 40 sessions

One interesting question is related to the number of sessions the systems need to store and what
its implications are for resilience and security.

Consider a system that immediately discards the older session when creating a new one, N = 1.
The following scenario would take place: A and B independently start new sessions at the same
time, and upon receiving the message from their partner, they discard the local session and accept
the incoming one. Now, A sends messages using the session started by B, DB

0 ,0 , however B has
deleted that session and cannot decrypt. All the messages received will trigger a retry request
to be re-encrypted in a new session. Figure 3 depicts the described scenario. The same logic
applies when A, respectively B, refreshes their session, and all in-flight messages from the older
one, trigger a retry request.

Since A and B communicate asynchronously, it is possible that messages keep crossing. In
addition, if A loses the dynamic state M times, a message sent from a session before the loss,
Nsender < Ncurrent −M, will trigger a retry request upon being received. When apps evaluate
that end-users refresh their sessions very frequently, e.g., faulty hardware, and do not want the
retransmitting overhead, the number of stored session can be modified to their needs, N = M.
However, storing a large N leads to the attacker being able to misuse any of those sessions to
inject messages as shown in previous works [20,42]. The parameter N can be seen as a trade-off
between the resilience against an unreliable environment, and the attack vector of using older
sessions to circumvent the healing of a specific session. The Signal messenger (current version:
Android app v7.24.2, November 2024, and any previous versions) stores 40 session at one time.
Following our previous argument, the number of sessions equals the window of tolerance of the
app to receive out-of-order messages from previous sessions and decrypt without retransmitting
messages. Previously, Signal (Android app v5.40.4, May 2022) restarted sessions every one hour,

21

A B

Initiate
session
DA

0,0

Initiate
session
DB

0,0m0 m′
0

DB
0 ,1 m1

DB
0 ,2

Cannot
De-
crypt

DB
0 ,3 Retry for m1

Initiate
session
DA

1,0
m1

m2

Cannot
De-
crypt

Retry for m2

m3

Cannot
De-
crypt

Retry for m3

Figure 3: Round-trips overhead on storing N = 1 session. A and B storing a single session
triggers retry requests on out-of-order messages from the previous session. If parties stored N = 2
sessions, they are decrypted upon being received.

which translates to accepting messages without retransmitting from the last 40 hours, or last 40
active sessions. Any other messages, would trigger a retry request and therefore a new session.
At the current version, Signal does not refresh their session every hour, so this parameter has
remained unchanged because of legacy code, and it translates to accepting messages in the latest
40 updates from which they received or sent a message.

6.2 Towards compromise detection

From our results that PCS cannot be achieved at the conversation layer, it becomes clear that
the problem repeats itself in detecting the compromise. The intuition behind it is similar,
allowed operations due to failure modes enable the attacker to mimic these behaviors and become
indistinguishable from the victim. Any deployable detection mechanisms would need to rely on
an out-of-band channel or require the explicit end-user’s involvement to detect at least a subset
of the more trivial attacks.

We can observe this already in the literature, however substantial work is needed in the
future to formally prove the claim. Principles and foundations for compromise detection were
proposed in [34], but this work did not consider potential failure modes such as state loss. More
recently, [8] develops a detection mechanism against an active attacker using ordinals (the epoch
and message numbers of the Double Ratchet) and also a hash of the message transcript. Under the

22

realistic assumptions of real-world implementations, their construction yields false positives, i.e.,
an attacker will be flagged over normal operations of the app. Consider the simple example, where
A restores an old backup, starts a new session with partner B and sends a message. This will
incorrectly result in a compromise detection, since the ordinals and the hashed transcript do not
match. Additionally, if the scheme is deployed strictly per session, the attacker can circumvent it
by spawning a new session, while remaining undetected on the session between A and B. Similarly
in [18,20,34], the mechanisms either do not consider multi-sessions or desynchronization. If these
mechanisms are used with multiple sessions or in the presence of failure modes, this typically
either introduces false positives or possibilities for circumvention, thus rendering them ineffective
in practice.

7 Conclusions

We have shown that real-world communication systems cannot at the same time provide full
conversation PCS as well as resilience against specific forms of state loss, such as loss of dynamic
state. However, these forms of state loss are unavoidable in real world deployment for a variety of
reasons, including memory glitches or OS-level backups. For designs like Signal and Matrix that
use concurrent sessions, we have shown a trade-off between resilience and security.

It is tempting to think that rotating long-term keys can circumvent these problems, but
such solutions essentially suffer from the exact same impossibility result under slightly modified
conditions on state loss. In the end, it seems that achieving stronger PCS guarantees requires
to prevent, or more likely, assume that state loss occurs extremely infrequently, in which case
one might be able to rely on external assumptions such as parallel out-of-band (OOB) solutions.
However, most real-world communication systems cannot realistically assume that OOB mecha-
nisms can be arbitrarily and immediately invoked, thereby leading to a trade-off with availability
(and in case of human end-users, usability).

If full PCS cannot be achieved, another option is to focus instead on compromise detection.
While we argued in Section 6.2 that detection suffers from similar problems, it may still be
possible to achieve in some cases. However, before designers consider this direction, they must
first consider the question: if a potential compromise were to be detected, what would be the
possible consequences, given that it is usually impossible to differentiate the honest party from
the adversary? In high-end security settings or with high-risk users, aborting communications
entirely and relying on OOB mechanisms might be possible. However, where high availability or
usability is the priority, this may not be a realistic option.

References

[1] Martin R. Albrecht, Benjamin Dowling, and Daniel Jones. Device-Oriented Group Messaging:
A Formal Cryptographic Analysis of Matrix’ Core. In SP, pages 2666–1685. IEEE, 2024.

[2] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo Pascual-Perez,
and Krzyzstof Pietrzak. DeCAF: Decentralizable CGKA with Fast Healing. In SCN (2),
volume 14974 of Lecture Notes in Computer Science, pages 294–313. Springer, 2024.

[3] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The Double Ratchet: Security Notions,
Proofs, and Modularization for the Signal Protocol. In EUROCRYPT (1), volume 11476 of
Lecture Notes in Computer Science, pages 129–158. Springer, 2019.

23

[4] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Continuous Group Key
Agreement with Active Security. In TCC (2), volume 12551 of Lecture Notes in Computer
Science, pages 261–290. Springer, 2020.

[5] David Balbás, Daniel Collins, and Phillip Gajland. WhatsUpp with Sender Keys? Analysis,
Improvements and Security Proofs. 14442:307–341, 2023.

[6] David Balbás, Daniel Collins, and Serge Vaudenay. Cryptographic Administration for Secure
Group Messaging. In USENIX Security Symposium, pages 1253–1270. USENIX Association,
2023.

[7] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad Omara, and
Katriel Cohn-Gordon. The Messaging Layer Security (MLS) Protocol, 2023.

[8] Khashayar Barooti, Daniel Collins, Simone Colombo, Löıs Huguenin-Dumittan, and Serge
Vaudenay. On active attack detection in messaging with immediate decryption. In CRYPTO
(4), volume 14084 of Lecture Notes in Computer Science, pages 362–395. Springer, 2023.

[9] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors Stepanovs.
Ratcheted Encryption and Key Exchange: The Security of Messaging. In CRYPTO (3),
volume 10403 of Lecture Notes in Computer Science, pages 619–650. Springer, 2017.

[10] Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler. On the Price of Concurrency in
Group Ratcheting Protocols. In TCC (2), volume 12551 of Lecture Notes in Computer
Science, pages 198–228. Springer, 2020.

[11] Alexander Bienstock, Jaiden Fairoze, Sanjam Garg, Pratyay Mukherjee, and Srinivasan
Raghuraman. A More Complete Analysis of the Signal Double Ratchet Algorithm. In
CRYPTO (1), volume 13507 of Lecture Notes in Computer Science, pages 784–813. Springer,
2022.

[12] Olivier Blazy, Angèle Bossuat, Xavier Bultel, Pierre-Alain Fouque, Cristina Onete, and Elena
Pagnin. SAID: Reshaping Signal into an Identity-Based Asynchronous Messaging Protocol
with Authenticated Ratcheting. In EuroS&P, pages 294–309. IEEE, 2019.

[13] Olivier Blazy, Ioana Boureanu, Pascal Lafourcade, Cristina Onete, and Léo Robert. How
fast do you heal? A taxonomy for post-compromise security in secure-channel establishment.
In USENIX Security Symposium, pages 5917–5934. USENIX Association, 2023.

[14] Sébastien Campion, Julien Devigne, Céline Duguey, and Pierre-Alain Fouque. Multi-Device
for Signal. In ACNS (2), volume 12147 of Lecture Notes in Computer Science, pages 167–187.
Springer, 2020.

[15] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas Stebila.
A Formal Security Analysis of the Signal Messaging Protocol. J. Cryptol., 33(4):1914–1983,
2020.

[16] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. On Post-compromise Security. In
CSF, pages 164–178. IEEE Computer Society, 2016.

[17] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner. On
Ends-to-Ends Encryption: Asynchronous Group Messaging with Strong Security Guarantees.
In CCS, pages 1802–1819. ACM, 2018.

24

[18] Cas Cremers, Jaiden Fairoze, Benjamin Kiesl, and Aurora Naska. Clone Detection in Secure
Messaging: Improving Post-Compromise Security in Practice. In CCS, pages 1481–1495.
ACM, 2020.

[19] Cas Cremers, Britta Hale, and Konrad Kohbrok. The Complexities of Healing in Secure
Group Messaging: Why Cross-Group Effects Matter. In USENIX Security Symposium, pages
1847–1864. USENIX Association, 2021.

[20] Cas Cremers, Charlie Jacomme, and Aurora Naska. Formal Analysis of Session-Handling in
Secure Messaging: Lifting Security from Sessions to Conversations. In USENIX Security
Symposium, pages 1235–1252. USENIX Association, 2023.

[21] Cas Cremers, Niklas Medinger, and Aurora Naska. PCS Analysis Models. https://github.
com/pcsanalysiseprint/pcsanalysiseprint, November 2024.

[22] Benjamin Dowling and Britta Hale. Authenticated Continuous Key Agreement: Active
MitM Detection and Prevention. 2023. URL: https://eprint.iacr.org/2023/228.

[23] F. Betül Durak and Serge Vaudenay. Bidirectional Asynchronous Ratcheted Key Agreement
with Linear Complexity. 2018. URL: https://eprint.iacr.org/2018/889, doi:10.1007/
978-3-030-26834-3_20.

[24] Google Messages. Technical Paper. online, Accessed: 26.09.2024. URL: https://www.
gstatic.com/messages/papers/messages_e2ee.pdf.

[25] Joseph Jaeger and Igors Stepanovs. Optimal Channel Security Against Fine-Grained State
Compromise: The Safety of Messaging. In CRYPTO (1), volume 10991 of Lecture Notes in
Computer Science, pages 33–62. Springer, 2018.

[26] Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient Ratcheting: Almost-Optimal
Guarantees for Secure Messaging. In EUROCRYPT (1), volume 11476 of Lecture Notes in
Computer Science, pages 159–188. Springer, 2019.

[27] Julia Len, Esha Ghosh, Paul Grubbs, and Paul Rösler. Interoperability in End-to-End
Encrypted Messaging. 2023. URL: https://eprint.iacr.org/2023/386.

[28] Xin Li, Michael C. Huang, Kai Shen, and Lingkun Chu. A Realistic Evaluation of Memory
Hardware Errors and Software System Susceptibility. In USENIX ATC. USENIX Association,
2010.

[29] Felix Linker, Ralf Sasse, and David Basin. A Formal Analysis of Apple’s iMessage PQ3
Protocol. Cryptology ePrint Archive, Paper 2024/1395, 2024. URL: https://eprint.iacr.
org/2024/1395.

[30] Moxie Marlinspike and Trevor Perrin. The Sesame Algorithm: Session Management for Asyn-
chronous Message Encryption. 2017. URL: https://signal.org/docs/specifications/
sesame/.

[31] Moxie Marlinspike and Trevor Perrin. The X3DH Key Agreement Protocol. Accessed:
26.09.2024. URL: https://signal.org/docs/specifications/x3dh/.

[32] Marlinspike, Moxie. Simplifying OTR deniability. online, Accessed: 26.09.2024. URL:
https://signal.org/blog/simplifying-otr-deniability/.

25

https://github.com/pcsanalysiseprint/pcsanalysiseprint
https://github.com/pcsanalysiseprint/pcsanalysiseprint
https://eprint.iacr.org/2023/228
https://eprint.iacr.org/2018/889
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-030-26834-3_20
https://www.gstatic.com/messages/papers/messages_e2ee.pdf
https://www.gstatic.com/messages/papers/messages_e2ee.pdf
https://eprint.iacr.org/2023/386
https://eprint.iacr.org/2024/1395
https://eprint.iacr.org/2024/1395
https://signal.org/docs/specifications/sesame/
https://signal.org/docs/specifications/sesame/
https://signal.org/docs/specifications/x3dh/
https://signal.org/blog/simplifying-otr-deniability/

[33] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The TAMARIN Prover
for the Symbolic Analysis of Security Protocols. In CAV, volume 8044 of Lecture Notes in
Computer Science, pages 696–701. Springer, 2013.

[34] Kevin Milner, Cas Cremers, Jiangshan Yu, and Mark Ryan. Automatically Detecting the
Misuse of Secrets: Foundations, Design Principles, and Applications. In CSF, pages 203–216.
IEEE Computer Society, 2017.

[35] Trevor Perrin and Moxie Marlinspike. The Double Ratchet Algorithm. Accessed: 26.09.2024.
URL: https://signal.org/docs/specifications/doubleratchet/.

[36] Paul Rösler, Christian Mainka, and Jörg Schwenk. More is Less: On the End-to-End Security
of Group Chats in Signal, WhatsApp, and Threema. In EuroS&P, pages 415–429. IEEE,
2018.

[37] Signal Messenger. Technical Specification. online, Accessed: 26.09.2024. URL: https:
//signal.org/docs/.

[38] Douglas Stebila. Security analysis of the iMessage PQ3 protocol. Cryptology ePrint Archive,
Paper 2024/357, 2024. URL: https://eprint.iacr.org/2024/357.

[39] The Matrix.org Foundation. Matrix specification: Client-Server API. online, Accessed:
26.09.2024. URL: https://spec.matrix.org/v1.11/client-server-api/.

[40] The Matrix.org Foundation. Megolm. online, Accessed: 26.09.2024. URL: https://gitlab.
matrix.org/matrix-org/olm/-/raw/master/docs/megolm.md.

[41] The Matrix.org Foundation. Olm. online, Accessed: 26.09.2024. URL: https://gitlab.
matrix.org/matrix-org/olm/-/raw/master/docs/olm.md.

[42] Andreas Tsouloupas. Breaking Cryptography in the Wild: The Loose Ends of the Wire.
Master’s thesis, ETH Zurich, 2023. URL: https://doi.org/10.3929/ethz-b-000673362.

[43] WhatsApp. Technical White Paper. online, Accessed: 26.09.2024. URL: https://www.
whatsapp.com/security/.

[44] Wire. Proteus. online, Accessed: 26.09.2024. URL: https://github.com/wireapp/proteus.

26

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/
https://signal.org/docs/
https://eprint.iacr.org/2024/357
https://spec.matrix.org/v1.11/client-server-api/
https://gitlab.matrix.org/matrix-org/olm/-/raw/master/docs/megolm.md
https://gitlab.matrix.org/matrix-org/olm/-/raw/master/docs/megolm.md
https://gitlab.matrix.org/matrix-org/olm/-/raw/master/docs/olm.md
https://gitlab.matrix.org/matrix-org/olm/-/raw/master/docs/olm.md
https://doi.org/10.3929/ethz-b-000673362
https://www.whatsapp.com/security/
https://www.whatsapp.com/security/
https://github.com/wireapp/proteus

A Changelog

• Version 1.0, November 22, 2024.
• Version 1.0.1, November 25, 2024:

– Fixed typos.
– Added Changelog.

27

	Introduction
	Background
	Post-Compromise Security (PCS)
	Communication Systems

	Resilient Communication Protocols
	Abstract Communication System
	Real-World Failure Modes
	Functional Requirements
	Security Requirements
	Overview of Main Results and Consequences

	Impossibility Results
	Methodology
	The Tamarin Prover
	Modeling the Communication System
	Formal Analysis Results

	Improved Generalized Session-Handling
	Proposal
	Formal Analysis

	Discussion
	The design space of the number of stored sessions: Demystifying Signal's 40 sessions
	Towards compromise detection

	Conclusions
	Changelog

